Friday, April 5, 2024

20.8 - Property VI

In the previous section, we saw the fifth property of determinants. In this section, we will see the sixth property.

Property VI
This can be written in 6 steps:
1. Let Δ = $\left |\begin{array}{c}                           
a_1     &{    a_2     }    &{    a_3     }    \\
b_1    &{    b_2    }    &{    b_3    }    \\
c_1    &{    c_2    }    &{    c_3    }    \\
\end{array}\right | $.
2. Pick any two rows, say R2 and R3.
Apply R2 → R2 + k R3

• Then we get a new determinant Δ1

Δ1 = $\left |\begin{array}{c}                           
a_1     &{    a_2     }    &{    a_3     }    \\
b_1 + k c_1    &{    b_2 + k c_2    }    &{    b_3 + k c_2    }    \\
c_1    &{    c_2    }    &{    c_3    }    \\
\end{array}\right | $.

• Note that, when we apply R2 → R2 + k R3, the row R2 is affected. The other row R3 remains the same.

3. We can apply property 5. That is., we can split Δ1 and write it as the sum of two determinants:

$\left |\begin{array}{c}                           
a_1     &{    a_2     }    &{    a_3     }    \\
b_1 + k c_1    &{    b_2 + k c_2    }    &{    b_3 + k c_2    }    \\
c_1    &{    c_2    }    &{    c_3    }    \\
\end{array}\right | ~=~\left |\begin{array}{c}                           
a_1     &{    a_2     }    &{    a_3    }    \\
b_1    &{    b_2    }    &{    b_3    }    \\
c_1    &{    c_2    }    &{    c_3    }    \\
\end{array}\right |~+~\left |\begin{array}{c}                           
a_1     &{    a_2     }    &{    a_3    }    \\
k c_1    &{    k c_2    }    &{    k c_3    }    \\
c_1    &{    c_2    }    &{    c_3    }    \\
\end{array}\right |$

4. In the above equation, consider the second determinant in the R.H.S. All the elements of R2 are proportional to the corresponding elements in R3 in the same ratio k:1. So by applying property IV, this determinant is zero.

5. So the equation in (3) becomes:
$\left |\begin{array}{c}                           
a_1     &{    a_2     }    &{    a_3     }    \\
b_1 + k c_1    &{    b_2 + k c_2    }    &{    b_3 + k c_2    }    \\
c_1    &{    c_2    }    &{    c_3    }    \\
\end{array}\right | ~=~\left |\begin{array}{c}                           
a_1     &{    a_2     }    &{    a_3    }    \\
b_1    &{    b_2    }    &{    b_3    }    \\
c_1    &{    c_2    }    &{    c_3    }    \\
\end{array}\right |~+~0$

• That is: Δ1 = Δ

6. We can write:
If we apply the operation Ri → Ri + k Rj, the value of the determinant remains same.
7. This is true for columns also. We can write:
If we apply the operation Ci → Ci + k Cj, the value of the determinant remains same.
8. When we apply Ri → Ri + k Rj, the row affected is Ri . The row Rj is not affected.
• In one step, we must not use Ri in another operation.
9. A rule similar to (8) can be written for columns also.


Now we have a clear understanding about property VI. Let us see an example.

• Show that $\left|\begin{array}{r}                           
a    &{    a+b    }    &{    a+b+c    }    \\
2a    &{    3a+2b    }    &{    4a+3b+2c    }    \\
3a    &{    6a+3b    }    &{    10a+6b+3c    }    \\
\end{array}\right|~=~a^3$.
Solution:
 


◼ Remarks:
• 2, 3 and 4 (magenta color): Here we apply property VI
• 5(magenta color): Here we expand along C1

In the next section, we will see some solved examples.

Previous

Contents

Next

Copyright©2024 Higher secondary mathematics.blogspot.com

No comments:

Post a Comment