Thursday, April 4, 2024

20.7 - Property V

In the previous section, we saw the fourth property of determinants. In this section, we will see the fifth property.

Property V
This can be written in 6 steps:
1. Let Δ = $\left |\begin{array}{c}                           
a_1 + \lambda_1    &{    a_2 + \lambda_2    }    &{    a_3 + \lambda_3    }    \\
b_1    &{    b_2    }    &{    b_3    }    \\
c_1    &{    c_2    }    &{    c_3    }    \\
\end{array}\right | $.
2. We can split this determinant and write it as the sum of two determinants:

$\left |\begin{array}{c}                          
a_1 + \lambda_1    &{    a_2 + \lambda_2    }    &{    a_3 + \lambda_3    }    \\
b_1    &{    b_2    }    &{    b_3    }    \\
c_1    &{    c_2    }    &{    c_3    }    \\
\end{array}\right | ~=~\left |\begin{array}{c}                           
a_1     &{    a_2     }    &{    a_3    }    \\
b_1    &{    b_2    }    &{    b_3    }    \\
c_1    &{    c_2    }    &{    c_3    }    \\
\end{array}\right |~+~\left |\begin{array}{c}                           
 \lambda_1    &{ \lambda_2    }    &{ \lambda_3    }    \\
b_1    &{    b_2    }    &{    b_3    }    \\
c_1    &{    c_2    }    &{    c_3    }    \\
\end{array}\right |$

3. This can be verified by evaluating the L.H.S. For that, we will expand along R1.


4. In the same way, the reader may check the result for other rows and columns.

5. Based on the above steps, we can write:
If some or all elements of a row or column of a determinant are expressed as sum of two (or more) terms, then the determinant can be expressed as sum of two (or more) determinants.

6. Let us see a simple demonstration prepared using a spreadsheet program:

◼ Remarks:
• 1(magenta color): Here elements of the second column are written as the sum of two numbers. 
• 2(magenta color): Here we apply property V to split the given determinant and write it as the sum of two determinants.
• 3(magenta color): Here each of the three determinants are calculated individually using a spreadsheet program. We see that, L.H.S is equal to the R.H.S.

Now we have a clear understanding about property V. Let us see an example. It can be written in 2 steps:

1. Show that $\left |\begin{array}{c}                           
a    &{    b    }    &{    c    }    \\
a+2x    &{    b+2y    }    &{    c+2z    }    \\
x    &{    y    }    &{    z    }    \\
\end{array}\right | ~=~0$.
 

2. We can write:


◼ Remarks:
• 1(magenta color): Here we apply property V to split the given determinant and write it as the sum of two determinants.
• 2(magenta color):
    ♦ Consider the first determinant in the R.H.S. The rows R1 and R2 are identical. So by property III, the value of this determinant is zero
    ♦ Consider the second determinant in the R.H.S. Every element of R2 is proportional to the corresponding elements of R3 by the same ratio 2:1. So by property IV, the value of this determinant is zero.


In the next section, we will see Property VI.

Previous

Contents

Next

Copyright©2024 Higher secondary mathematics.blogspot.com

No comments:

Post a Comment