Friday, June 27, 2025

23.28 - More Solved Examples on Properties of Definite Integrals

In the previous section, we saw some properties of definite integrals. We saw some solved examples also. In this section, we will see a few more solved examples.

Solved Example 23.112
Evaluate $\small{\int_{0}^{\frac{\pi}{2}}{\left[\frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \right]dx}}$
Solution:
1. The limits are $\small{0~\rm{and}~\frac{\pi}{2}}$. So we will apply:

$\bf{{\rm{P_4}}:\int_0^a{\left[f(x) \right]dx}~=~\int_0^a{\left[f(a-x) \right]dx}}$

We get:
$\small{I~=~\int_{0}^{\frac{\pi}{2}}{\left[\frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}\right]dx}~=~\int_{0}^{\frac{\pi}{2}}{\left[\frac{\sqrt{\sin \left(\frac{\pi}{2} - x \right)}}{\sqrt{\sin \left(\frac{\pi}{2} - x \right)} + \sqrt{\cos \left(\frac{\pi}{2} - x \right)}} \right]dx}  }$

$\small{~=~\int_{0}^{\frac{\pi}{2}}{\left[\frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}}\right]dx}}$

2. Now, I + I = 2I =

$\small{\int_{0}^{\frac{\pi}{2}}{\left[\frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \right]dx}+\int_{0}^{\frac{\pi}{2}}{\left[\frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} \right]dx}=\int_{0}^{\frac{\pi}{2}}{\left[\frac{\sqrt{\sin x}~+~\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} \right]dx}}$

$\small{~=\int_{0}^{\frac{\pi}{2}}{\left[1 \right]dx}=[x]_{0}^{\frac{\pi}{2}}=\frac{\pi}{2}}$

Therefore, $\small{I = \frac{\pi}{4}}$

Solved Example 23.113
Evaluate $\small{\int_{0}^{a}{\left[\frac{\sqrt{x}}{\sqrt{x} + \sqrt{a-x}} \right]dx}}$
Solution:
1. The limits are $\small{0~\rm{and}~a}$. So we will apply:

$\bf{{\rm{P_4}}:\int_0^a{\left[f(x) \right]dx}~=~\int_0^a{\left[f(a-x) \right]dx}}$

We get:
$\small{I~=~\int_{0}^{a}{\left[\frac{\sqrt{x}}{\sqrt{x} + \sqrt{a-x}}\right]dx}~=~\int_{0}^{a}{\left[\frac{\sqrt{a-x}}{\sqrt{a-x} ~+~ \sqrt{a-(a-x)}}\right]dx}  }$

$\small{~=~\int_{0}^{a}{\left[\frac{\sqrt{a-x}}{\sqrt{a-x} ~+~ \sqrt{x}}\right]dx}}$

2. Now, I + I = 2I =

$\small{\int_{0}^{a}{\left[\frac{\sqrt{x}}{\sqrt{x} + \sqrt{a-x}}\right]dx}+\int_{0}^{a}{\left[\frac{\sqrt{a-x}}{\sqrt{a-x} ~+~ \sqrt{x}}\right]dx}=\int_{0}^{a}{\left[\frac{\sqrt{x}+\sqrt{a-x}}{\sqrt{x} + \sqrt{a-x}}\right]dx}}$

$\small{~=\int_{0}^{a}{\left[1 \right]dx}=[x]_{0}^{a}=a}$

Therefore, $\small{I = \frac{a}{2}}$

Solved Example 23.114
Evaluate $\small{\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}{\left[\sin^7 x \right]dx}}$
Solution:
1. The limits are $\small{\frac{-\pi}{2}~\rm{and}~\frac{\pi}{2}}$.
So we check whether $\small{f(x)=\sin^7 x}$ is even or odd.

(a) $\small{f(-x)\,=\,\sin^7 (-x)\,=\,\left(\sin(-x) \right)^7}$

$\small{\,=\,\left(-\sin(x) \right)^7\,=\,-\sin^7 x}$

$\small{\because \sin(-x) = -\sin x}$

(b) $\small{-f(x)\,=\,-\sin^7 (x)}$

(c) We see that:

$\small{f(-x) \,=\,-f(x)}$

• So the given f(x) is an odd function.

2. Since the given function is odd, we can apply:

$\bf{{\rm{P_7~(ii)}}:}$

$\bf{\int_{-a}^{a}{\left[f(x) \right]dx}~=~0}$
   ♦ If $\small{f}$ is an odd function

• We can write: $\small{\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}{\left[\sin^7 x \right]dx}~=~0}$

Solved Example 23.115
Evaluate $\small{\int_{0}^{2\pi}{\left[\cos^5 x \right]dx}}$
Solution:
1. The limits are 0 and $\small{2 \pi}$.
So we can apply:

$\bf{{\rm{P_6}}:}$

$\bf{\int_0^{2a}{\left[f(x) \right]dx}~=~2 \int_0^a{\left[f(x) \right]dx}}$
   ♦ If $\small{f(2a - x)~=~f(x)}$

$\bf{\int_0^{2a}{\left[f(x) \right]dx}~=~0}$
   ♦ If $\small{f(2a - x)~=~-f(x)}$
   
Here, 2a = $\small{2 \pi}$

So $\small{f(2a-x) = \cos^5(2 \pi - x)=\left(\cos(2\pi -x) \right)^5 =\left(\cos(x) \right)^5 = \cos^5 x = f(x)}$

So we can apply P6 (i). We get:

$\small{\int_{0}^{2\pi}{\left[\cos^5 x \right]dx}=2\int_{0}^{\pi}{\left[\cos^5 x \right]dx}~=~2I}$

2. We want to find I. We will apply:

$\bf{{\rm{P_4}}:\int_0^a{\left[f(x) \right]dx}~=~\int_0^a{\left[f(a-x) \right]dx}}$

We get:

$\small{I = \int_{0}^{\pi}{\left[\cos^5 x \right]dx}=\int_{0}^{\pi}{\left[\cos^5 (\pi - x) \right]dx} }$

$\small{\int_{0}^{\pi}{\left[(-\cos x)^5 \right]dx} =\int_{0}^{\pi}{\left[(-1)\cos^5x\right]dx}=(-1)\int_{0}^{\pi}{\left[\cos^5x\right]dx}=(-1)I}$

[$\small{\because~\cos(\pi - x)=-\cos x}$]

• Then $\small{2I = 0}$

3. Therefore, from the result in (1), we get:

$\small{\int_{0}^{2\pi}{\left[\cos^5 x \right]dx}~=~2I~=~0}$

Solved Example 23.116
Evaluate $\small{\int_{0}^{\frac{\pi}{2}}{\left[2 \log \sin(x) - \log \sin(2x) \right]dx}}$
Solution:
1. Let us rearrange the given function:

$\small{f(x)=2 \log \sin(x) - \log \sin(2x)= \frac{}{} \log \sin^2(x) - \log \sin(2x)}$

$\small{= \log\left(\frac{\sin^2(x)}{\sin(2x)} \right)= \log\left(\frac{\sin^2(x)}{2 \sin x \cos x} \right)=\log(\sin x)-\log(\cos x)-\log 2}$

2. So we can write:

$\small{I = \int_{0}^{\frac{\pi}{2}}{\left[2 \log \sin(x) - \log \sin(2x) \right]dx}=\int_{0}^{\frac{\pi}{2}}{\left[\log(\sin x)-\log(\cos x)-\log 2\right]dx}}$

$\small{\Rightarrow I =\int_{0}^{\frac{\pi}{2}}{\left[\log(\sin x)-\log(\cos x)\right]dx}+(-1)\int_{0}^{\frac{\pi}{2}}{\left[\log 2\right]dx}}$

3. Applying P4, we get:

$\small{I=\int_{0}^{\frac{\pi}{2}}{\left[\log(\sin (\frac{\pi}{2}-x))-\log(\cos (\frac{\pi}{2}-x))\right]dx}+(-1)\int_{0}^{\frac{\pi}{2}}{\left[\log 2\right]dx}}$

$\small{\Rightarrow I=\int_{0}^{\frac{\pi}{2}}{\left[\log(\cos x)-\log(\sin x)\right]dx}+(-1)\int_{0}^{\frac{\pi}{2}}{\left[\log 2\right]dx}}$

$\small{\Rightarrow I=(-1)\int_{0}^{\frac{\pi}{2}}{\left[\log(\sin x)-\log(\cos x)\right]dx}+(-1)\int_{0}^{\frac{\pi}{2}}{\left[\log 2\right]dx}}$

4. Let us compare the results from (2) and (3):

• From (2), we have:

$\small{I =\int_{0}^{\frac{\pi}{2}}{\left[\log(\sin x)-\log(\cos x)\right]dx}+(-1)\int_{0}^{\frac{\pi}{2}}{\left[\log 2\right]dx}}$

• From (3), we have:

$\small{I=(-1)\int_{0}^{\frac{\pi}{2}}{\left[\log(\sin x)-\log(\cos x)\right]dx}+(-1)\int_{0}^{\frac{\pi}{2}}{\left[\log 2\right]dx}}$

5. Adding the two results, we get:

$\small{2I=(-2)\int_{0}^{\frac{\pi}{2}}{\left[\log 2\right]dx}}$

$\small{\Rightarrow I=(-1)\int_{0}^{\frac{\pi}{2}}{\left[\log 2\right]dx}=(-1)(\log 2)[x]_0^{\frac{\pi}{2}}}$

$\small{=(-1)(\log 2)\left[\frac{\pi}{2} \right]=\frac{\pi}{2} \left[\log\left( \frac{1}{2}\right) \right]}$

Solved Example 23.117
Evaluate $\small{\int_{0}^{\frac{\pi}{2}}{\left[\log \sin(x) \right]dx}}$
Solution:
1. The limits are $\small{0~\rm{and}~\frac{\pi}{2}}$. So we will apply:

$\bf{{\rm{P_4}}:\int_0^a{\left[f(x) \right]dx}~=~\int_0^a{\left[f(a-x) \right]dx}}$

We get:
$\small{I~=~\int_{0}^{\frac{\pi}{2}}{\left[\log \sin(x)\right]dx}~=~\int_{0}^{\frac{\pi}{2}}{\left[\log \sin \left(\frac{\pi}{2} - x \right) \right]dx}  }$

$\small{~=~\int_{0}^{\frac{\pi}{2}}{\left[\log \cos(x)\right]dx}}$

2. Now, I + I = 2I =

$\small{\int_{0}^{\frac{\pi}{2}}{\left[\log \sin(x) \right]dx}+\int_{0}^{\frac{\pi}{2}}{\left[\log \cos(x) \right]dx}=\int_{0}^{\frac{\pi}{2}}{\left[\log \sin(x) + \log \cos(x) \right]dx}}$

$\small{~=\int_{0}^{\frac{\pi}{2}}{\Big[\log \left[\sin(x)\,\cos x \right] \Big]dx}}$

3. Let us add and subtract "log 2". We get:

$\small{2I~=\int_{0}^{\frac{\pi}{2}}{\Big[\log \left[\sin(x)\,\cos x \right]~+~\log 2~-~\log 2 \Big]dx}}$

$\small{\Rightarrow 2I~=~\int_{0}^{\frac{\pi}{2}}{\Big[\log \left[2 \sin(x)\,\cos x \right]~-~\log 2 \Big]dx}~=~\int_{0}^{\frac{\pi}{2}}{\Big[\log \left[\sin(2x) \right]~-~\log 2 \Big]dx}}$

$\small{\Rightarrow 2I~=~\int_{0}^{\frac{\pi}{2}}{\Big[\log \left[\sin(2x) \right] \Big]dx}~-~\int_{0}^{\frac{\pi}{2}}{\Big[\log 2 \Big]dx}~=~I_1~-~I_2}$

4. Now we will evaluate $\small{I_1}$:

We have: $\small{I_1~=~\int_{0}^{\frac{\pi}{2}}{\Big[\log \left[\sin(2x) \right] \Big]dx}}$

• Put u = 2x

• Then $\small{\frac{du}{dx}~=~2 ~\Rightarrow 2dx = du}$

Also, When x approach zero, u approach zero

And when x approach $\small{\frac{\pi}{2}}$, u approach $\small{\pi}$

Then $\small{I_1~=~\int_{0}^{\frac{\pi}{2}}{\Big[\left(\frac{2}{2} \right)\log \left[\sin(2x) \right] \Big]dx}~=~\int_{0}^{\pi}{\Big[\left(\frac{1}{2} \right)\log \left[\sin(u) \right] \Big]du}}$

$\small{\Rightarrow I_1~=~\left(\frac{1}{2} \right) \int_{0}^{\pi}{\Big[\log \left[\sin(u) \right] \Big]du}}$ 

5. Let us apply:

$\bf{{\rm{P_6}}:}$

$\bf{\int_0^{2a}{\left[f(x) \right]dx}~=~2 \int_0^a{\left[f(x) \right]dx}}$
   ♦ If $\small{f(2a - x)~=~f(x)}$

$\bf{\int_0^{2a}{\left[f(x) \right]dx}~=~0}$
   ♦ If $\small{f(2a - x)~=~-f(x)}$
   
• Here assume that, 2a = $\small{\pi}$

• Given $\small{f(u)=\log[\sin(u)]}$

• $\small{f(2a-u)=\log[\sin(\pi-u)]~=~\log[\sin (u)]~=~f(u)}$

So we can apply P6 (i). We get:

$\small{I_1~=~\left(\frac{1}{2} \right) \int_{0}^{\pi}{\Big[\log \left[\sin(u) \right] \Big]du}}$

$\small{\int_{0}^{\pi}{\Big[\log \left[\sin(u) \right] \Big]du}~=~2\int_{0}^{\frac{\pi}{2}}{\Big[\log \left[\sin(u) \right] \Big]du}}$

6. Then from (4), we get:

$\small{I_1~=~\left(\frac{1}{2} \right) \int_{0}^{\pi}{\Big[\log \left[\sin(u) \right] \Big]du}~=~\left(\frac{1}{2} \right)(2) \int_{0}^{\frac{\pi}{2}}{\Big[\log \left[\sin(u) \right] \Big]du}}$

$\small{\Rightarrow I_1~=~ \int_{0}^{\frac{\pi}{2}}{\Big[\log \left[\sin(u) \right] \Big]du}}$

7. Applying P0 to the result in (6), we can write:

$\small{I_1~=~ \int_{0}^{\frac{\pi}{2}}{\Big[\log \left[\sin(x) \right] \Big]dx}}$

$\small{\Rightarrow I_1~=~ I}$

8. Now, based on the result in (3), we can write:

$\small{2I~=~I~-~I_2}$

$\small{\Rightarrow I~=~(-1)I_2}$

$\small{\Rightarrow I~=~(-1)\int_{0}^{\frac{\pi}{2}}{\Big[\log 2 \Big]dx}}$

$\small{\Rightarrow I~=~(-1){\Big[\log 2\left(\frac{\pi}{2} \right) \Big]dx}~=~\frac{-\pi\,\log 2}{2}}$

Solved Example 23.118
Evaluate $\small{\int_{0}^{\frac{\pi}{2}}{\left[\log\left(\frac{4 + 3 \sin x}{4 + 3 \cos x} \right) \right]dx}}$
Solution:
1. The limits are $\small{0~\rm{and}~a}$. So we will apply:

$\bf{{\rm{P_4}}:\int_0^a{\left[f(x) \right]dx}~=~\int_0^a{\left[f(a-x) \right]dx}}$

We get:

$\small{I~=~\int_{0}^{\frac{\pi}{2}}{\left[\log\left(\frac{4 + 3 \sin x}{4 + 3 \cos x} \right) \right]dx}~=~\int_{0}^{\frac{\pi}{2}}{\left[\log\left(4 + 3 \sin x \right)~-~\log\left(4 + 3 \cos x \right) \right]dx}  }$

$\small{~=~\int_{0}^{\frac{\pi}{2}}{\left[\log\left(4 + 3 \sin \left(\frac{\pi}{2} - x \right) \right)~-~\log\left(4 + 3 \cos \left(\frac{\pi}{2} - x \right) \right) \right]dx}  }$

$\small{~=~\int_{0}^{\frac{\pi}{2}}{\left[\log\left(4 + 3 \cos x  \right)~-~\log\left(4 + 3 \sin x \right) \right]dx}  }$

$\small{~=~(-1)\int_{0}^{\frac{\pi}{2}}{\left[\log\left(4 + 3 \sin x  \right)~-~\log\left(4 + 3 \cos x \right) \right]dx}  }$

$\small{~=~(-1)I }$

2. Therefore, 2I = 0, Which gives I = 0


The link below gives a few more solved examples:

Exercise 23.11


In the next section, we will see some miscellaneous solved examples.

Previous

Contents

Next 

Copyright©2025 Higher secondary mathematics.blogspot.com

Tuesday, June 24, 2025

23.27 - Solved Examples on Properties of Definite Integrals

In the previous section, we saw some properties of definite integrals. We saw some solved examples also. In this section, we will see a few more solved examples.

First we will write the method to test whether a given function is odd, even, neither:

Even: $\small{f(-x) \,=\,f(x)}$ 

Odd: $\small{f(-x) \,=\,-f(x)}$ 

Neither: $\small{f(-x) \, \ne \,f(x)}$  and

              $\small{f(-x) \, \ne \,-f(x)}$

Let us see an example:

Check whether the function $\small{f(x)\,=\,x^2 + x}$ is even, odd or neither.

Solution:
1. $\small{f(-x)\,=\,(-x)^2 + (-x)\,=\,x^2 \,-\,x}$ 

2. $\small{-f(x)\,=\,-x^2\,-\,x}$

3. We see that:

$\small{f(-x) \, \ne \,f(x)}$ and  

$\small{f(-x) \, \ne \,-f(x)}$

So the given function is neither even nor odd


Now we will proceed with the solved examples:

Solved Example 23.104
Evaluate $\small{\int_{\frac{-\pi}{4}}^{\frac{\pi}{4}}{\left[\sin^2 x \right]dx}}$
Solution:
1. The limits are $\small{\frac{-\pi}{4}~\rm{and}~\frac{\pi}{4}}$.
So we check whether $\small{f(x)=\sin^2 x}$ is even or odd.

(a) $\small{f(-x)\,=\,\sin^2(-x)\,=\,\left(\sin(-x) \right)^2}$ 

$\small{\,=\,\left(-\sin(x) \right)^2\,=\,\sin^2 x}$ 

$\small{\because \sin(-x) = -\sin x }$

(b) $\small{-f(x)\,=\,-\sin^2 x}$

(c) We see that:

$\small{f(-x) \,=\,f(x)}$

• So the given f(x) is an even function.

2. Since the given function is even, we can apply:

$\bf{{\rm{P_7~(i)}}:}$

$\bf{\int_{-a}^{a}{\left[f(x) \right]dx}~=~2 \int_0^a{\left[f(x) \right]dx}}$
   ♦ If $\small{f}$ is an even function

• We can write:

$\small{\int_{\frac{-\pi}{4}}^{\frac{\pi}{4}}{\left[\sin^2 x \right]dx}\,=\,2 \int_{0}^{\frac{\pi}{4}}{\left[\sin^2 x \right]dx}}$

3. Let $\small{I~=~\,2 \int_{0}^{\frac{\pi}{4}}{\left[\sin^2 x \right]dx}}$

• First we find the indefinite integral F.

We have:
$\small{F~=~2 \int{\left[\sin^2 x \right]dx}~=~2 \int{\left[\frac{1 - \cos(2x)}{2}\right]dx}}$

$\small{~=~2 \int{\left[\frac{1}{2}\right]dx}~+~2 \int{\left[\frac{- \cos(2x)}{2}\right]dx}}$

$\small{~=~2 \left[\frac{x}{2}\right]~+~2 \left[\frac{- \sin(2x)}{2(2)}\right]}$

$\small{~=~x~-~ \frac{\sin(2x)}{2}}$

4. Therefore,

$\small{I~=~F(\frac{\pi}{4})\,-\,F(0)~=~\left[x~-~ \frac{\sin(2x)}{2} \right]_{0}^{\frac{\pi}{4}}}$

$\small{~=~\left[\frac{\pi}{4}~-~ \frac{\sin(\frac{\pi}{2})}{2} \right]~-~\left[0~-~ \frac{\sin(0)}{2} \right]}$

$\small{~=~\left[\frac{\pi}{4}~-~ \frac{1}{2} \right]~-~\left[0~-~ \frac{0}{2} \right]~=~\frac{\pi}{4}~-~ \frac{1}{2}}$

Solved Example 23.105
Evaluate $\small{\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}{\left[\sin^2 x \right]dx}}$
Solution:
1. The limits are $\small{\frac{-\pi}{2}~\rm{and}~\frac{\pi}{2}}$.
So we check whether $\small{f(x)=\sin^2 x}$ is even or odd.

(a) $\small{f(-x)\,=\,\sin^2(-x)\,=\,\left(\sin(-x) \right)^2}$

$\small{\,=\,\left(-\sin(x) \right)^2\,=\,\sin^2 x}$

$\small{\because \sin(-x) = -\sin x }$

(b) $\small{-f(x)\,=\,-\sin^2 x}$

(c) We see that:

$\small{f(-x) \,=\,f(x)}$

• So the given f(x) is an even function.

2. Since the given function is even, we can apply:

$\bf{{\rm{P_7~(i)}}:}$

$\bf{\int_{-a}^{a}{\left[f(x) \right]dx}~=~2 \int_0^a{\left[f(x) \right]dx}}$
   ♦ If $\small{f}$ is an even function

• We can write:

$\small{\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}{\left[\sin^2 x \right]dx}\,=\,2 \int_{0}^{\frac{\pi}{2}}{\left[\sin^2 x \right]dx}}$

3. Let $\small{I~=~\,2 \int_{0}^{\frac{\pi}{2}}{\left[\sin^2 x \right]dx}}$

• First we find the indefinite integral F.

We have:
$\small{F~=~2 \int{\left[\sin^2 x \right]dx}~=~2 \int{\left[\frac{1 - \cos(2x)}{2}\right]dx}}$

$\small{~=~2 \int{\left[\frac{1}{2}\right]dx}~+~2 \int{\left[\frac{- \cos(2x)}{2}\right]dx}}$

$\small{~=~2 \left[\frac{x}{2}\right]~+~2 \left[\frac{- \sin(2x)}{2(2)}\right]}$

$\small{~=~x~-~ \frac{\sin(2x)}{2}}$

4. Therefore,

$\small{I~=~F(\frac{\pi}{2})\,-\,F(0)~=~\left[x~-~ \frac{\sin(2x)}{2} \right]_{0}^{\frac{\pi}{2}}}$

$\small{~=~\left[\frac{\pi}{2}~-~ \frac{\sin(\pi)}{2} \right]~-~\left[0~-~ \frac{\sin(0)}{2} \right]}$

$\small{~=~\left[\frac{\pi}{2}~-~ \frac{0}{2} \right]~-~\left[0~-~ \frac{0}{2} \right]~=~\frac{\pi}{2}}$

Solved Example 23.106
Evaluate $\small{\int_{0}^{\frac{\pi}{2}}{\left[\cos^2 x \right]dx}}$
Solution:
1. The limits are $\small{0~\rm{and}~\frac{\pi}{2}}$.

$\small{\frac{\pi}{2}}$ is $\small{\left(2 \times\frac{\pi}{4} \right)}$

So we can apply:

$\bf{{\rm{P_5}}:\int_0^{2a}{\left[f(x) \right]dx}~=~\int_0^a{\left[f(x) \right]dx}~+~\int_0^a{\left[f(2a-x) \right]dx}}$

2. We get:

$\small{\int_{0}^{\frac{\pi}{2}}{\left[\cos^2 x \right]dx}=\int_{0}^{\frac{\pi}{4}}{\left[\cos^2 x \right]dx}+\int_{0}^{\frac{\pi}{4}}{\left[\cos^2 \left( \frac{\pi}{2}-x \right) \right]dx}}$

$\small{=\int_{0}^{\frac{\pi}{4}}{\left[\cos^2 x \right]dx}+\int_{0}^{\frac{\pi}{4}}{\left[\sin^2 x \right]dx}}$

$\small{=\int_{0}^{\frac{\pi}{4}}{\left[\cos^2 x + \sin^2 x \right]dx}=\int_{0}^{\frac{\pi}{4}}{\left[1 \right]dx}}$

$\small{=\left[x \right]_{0}^{\frac{\pi}{4}}dx~=~\frac{\pi}{4}}$

Solved Example 23.107
Evaluate $\small{\int_{0}^{\pi}{\left[\frac{x \sin(x)}{1 + \cos^2 (x)} \right]dx}}$
Solution:
1. Here we can apply:

$\bf{{\rm{P_4}}:\int_0^a{\left[f(x) \right]dx}~=~\int_0^a{\left[f(a-x) \right]dx}}$

We get: $\small{I~=~\int_{0}^{\pi}{\left[\frac{x \sin(x)}{1 + \cos^2 (x)} \right]dx}}$

$\small{~=~\int_{0}^{\pi}{\left[\frac{(\pi - x) \sin(\pi - x)}{1 + \cos^2 (\pi - x)} \right]dx}=\int_{0}^{\pi}{\left[\frac{(\pi - x) \sin(x)}{1 + \left(-\cos(x) \right)^2} \right]dx}}$

$\small{~=\int_{0}^{\pi}{\left[\frac{(\pi - x) \sin(x)}{1 + \cos^2(x)} \right]dx}=\int_{0}^{\pi}{\left[\frac{\pi \sin(x)}{1 + \cos^2(x)} \right]dx}-\int_{0}^{\pi}{\left[\frac{x \sin(x)}{1 + \cos^2(x)} \right]dx}}$

$\small{~=\int_{0}^{\pi}{\left[\frac{\pi \sin(x)}{1 + \cos^2(x)} \right]dx}-I}$

$\small{\Rightarrow 2I~=~\int_{0}^{\pi}{\left[\frac{\pi \sin(x)}{1 + \cos^2(x)} \right]dx}}$

$\small{\Rightarrow I~=~\frac{\pi}{2} \int_{0}^{\pi}{\left[\frac{\sin(x)}{1 + \cos^2(x)} \right]dx}}$

3. First we find the indefinite integral $\small{F~=~\frac{\pi}{2} \int{\left[\frac{\sin(x)}{1 + \cos^2(x)} \right]dx}}$.

• Put u = cos x

$\small{\Rightarrow \frac{du}{dx}=-\sin x \Rightarrow -\sin x \,dx = du}$

• Now F can be written as:

$\small{F=\frac{\pi}{2} \int{\left[\frac{(-1)(-1)\sin(x)}{1 + \cos^2(x)} \right]dx}=\frac{\pi}{2} \int{\left[\frac{(-1)}{1 + u^2} \right]du}}$

• This integration gives:

$\small{(-1)\left(\frac{\pi}{2} \right)\left(\frac{1}{1} \right) \tan^{-1}\frac{u}{1}~=~(-1)\left(\frac{\pi}{2} \right) \tan^{-1}u}$

4. We wrote: u = cos x

When x approach the lower limit zero, u approach 1

When x approach the upper limit $\small{\pi}$, u approach −1.

5. So the given integral can be written as:

$\small{I~=~\frac{\pi}{2} \int_{0}^{\pi}{\left[\frac{\sin(x)}{1 + \cos^2(x)} \right]dx}=\frac{\pi}{2} \int_1^{-1}{\left[\frac{(-1)}{1 + u^2} \right]du}}$

$\small{~=(-1)\frac{\pi}{2} \int_{-1}^{1}{\left[\frac{(-1)}{1 + u^2} \right]du}~\rm{[by~P_1]}~=~\frac{\pi}{2} \int_{-1}^{1}{\left[\frac{1}{1 + u^2} \right]du}}$

$\small{~=~(2)\frac{\pi}{2} \int_{0}^{1}{\left[\frac{1}{1 + u^2} \right]du}~\rm{[by~P_7,~since ~this~is~even~function]}}$

$\small{~=~\pi \int_{0}^{1}{\left[\frac{1}{1 + u^2} \right]du}}$

6. Therefore,

$\small{I~=~F(1)\,-\,F(0)~=~\left[(\pi)\tan^{-1}u \right]_{0}^{1}}$

$\small{~=~\left[(\pi) \tan^{-1}1 \right]~-~\left[(\pi) \tan^{-1}0 \right]}$

$\small{~=~\left[(\pi) \frac{\pi}{4} \right]~-~\left[(\pi) 0 \right]~=~\frac{\pi^2}{4}}$

Solved Example 23.108
Evaluate $\small{\int_{-1}^{1}{\left[\sin^5 (x) \, \cos^4(x) \right]dx}}$
Solution:
1. The limits are −1 and 1.
So we check whether $\small{f(x)=\sin^5 (x) \, \cos^4(x)}$ is even or odd.

(a) $\small{f(-x)\,=\,\sin^5 (-x) \, \cos^4(-x)\,=\,\left(\sin(-x) \right)^5\,\left(\cos(-x) \right)^4}$

$\small{\,=\,\left(-\sin(x) \right)^5\,\left(\cos(x) \right)^4\,=\,-\sin^5 x \, \cos^4 x}$

$\small{\because \sin(-x) = -\sin x ~~\rm{and}~~\cos(-x) = \cos x}$

(b) $\small{-f(x)\,=\,-\sin^5 (x) \, \cos^4(x)}$

(c) We see that:

$\small{f(-x) \,=\,-f(x)}$

• So the given f(x) is an odd function.

2. Since the given function is odd, we can apply:

$\bf{{\rm{P_7~(ii)}}:}$

$\bf{\int_{-a}^{a}{\left[f(x) \right]dx}~=~0}$
   ♦ If $\small{f}$ is an odd function

• We can write: $\small{\int_{-1}^{1}{\left[\sin^5 (x) \, \cos^4(x) \right]dx}~=~0}$

Solved Example 23.109
Evaluate $\small{\int_{0}^{\frac{\pi}{2}}{\left[\frac{\sin^4 x}{\sin^4 x + \cos^4 x} \right]dx}}$
Solution:
1. The limits are $\small{0~\rm{and}~\frac{\pi}{2}}$. So we will apply:

$\bf{{\rm{P_4}}:\int_0^a{\left[f(x) \right]dx}~=~\int_0^a{\left[f(a-x) \right]dx}}$

We get:
$\small{I~=~\int_{0}^{\frac{\pi}{2}}{\left[\frac{\sin^4 x}{\sin^4 x + \cos^4 x} \right]dx}=\int_{0}^{\frac{\pi}{2}}{\left[\frac{\sin^4 \left(\frac{\pi}{2} - x \right)}{\sin^4 \left(\frac{\pi}{2} - x \right) + \cos^4 \left(\frac{\pi}{2} - x \right)} \right]dx}}$

$\small{~=~\int_{0}^{\frac{\pi}{2}}{\left[\frac{\cos^4 x}{\cos^4 x + \sin^4 x} \right]dx}}$

2. Now, I + I = 2I =

$\small{\int_{0}^{\frac{\pi}{2}}{\left[\frac{\sin^4 x}{\sin^4 x + \cos^4 x} \right]dx}+\int_{0}^{\frac{\pi}{2}}{\left[\frac{\cos^4 x}{\cos^4 x + \sin^4 x} \right]dx}=\int_{0}^{\frac{\pi}{2}}{\left[\frac{\sin^4 x + \cos^4 x}{\sin^4 x + \cos^4 x} \right]dx}}$

$\small{~=\int_{0}^{\frac{\pi}{2}}{\left[1 \right]dx}=[x]_{0}^{\frac{\pi}{2}}=\frac{\pi}{2}}$

Therefore, $\small{I = \frac{\pi}{4}}$

Solved Example 23.110
Evaluate $\small{\int_{0}^{\frac{\pi}{2}}{\left[\frac{\cos^5 x}{\sin^5 x + \cos^5 x} \right]dx}}$
Solution:
1. The limits are $\small{0~\rm{and}~\frac{\pi}{2}}$. So we will apply:

$\bf{{\rm{P_4}}:\int_0^a{\left[f(x) \right]dx}~=~\int_0^a{\left[f(a-x) \right]dx}}$

We get:
$\small{I~=~\int_{0}^{\frac{\pi}{2}}{\left[\frac{\cos^5 x}{\sin^5 x + \cos^5 x} \right]dx}=\int_{0}^{\frac{\pi}{2}}{\left[\frac{\cos^5 \left(\frac{\pi}{2} - x \right)}{\sin^5 \left(\frac{\pi}{2} - x \right) + \cos^5 \left(\frac{\pi}{2} - x \right)} \right]dx}}$

$\small{~=~\int_{0}^{\frac{\pi}{2}}{\left[\frac{\sin^5 x}{\cos^5 x + \sin^5 x} \right]dx}}$

2. Now, I + I = 2I =

$\small{\int_{0}^{\frac{\pi}{2}}{\left[\frac{\cos^5 x}{\sin^5 x + \cos^5 x} \right]dx}+\int_{0}^{\frac{\pi}{2}}{\left[\frac{\sin^5 x}{\sin^5 x + \cos^5 x} \right]dx}=\int_{0}^{\frac{\pi}{2}}{\left[\frac{\sin^5 x + \cos^5 x}{\sin^5 x + \cos^5 x} \right]dx}}$

$\small{~=\int_{0}^{\frac{\pi}{2}}{\left[1 \right]dx}=[x]_{0}^{\frac{\pi}{2}}=\frac{\pi}{2}}$

Therefore, $\small{I = \frac{\pi}{4}}$

Solved Example 23.111
Evaluate $\small{\int_{0}^{\frac{\pi}{2}}{\left[\frac{\sin^{\frac{3}{2}} x}{\sin^{\frac{3}{2}} x + \cos^{\frac{3}{2}} x} \right]dx}}$
Solution:
1.1. The limits are $\small{0~\rm{and}~\frac{\pi}{2}}$. So we will apply:

$\bf{{\rm{P_4}}:\int_0^a{\left[f(x) \right]dx}~=~\int_0^a{\left[f(a-x) \right]dx}}$

We get:
$\small{I~=~\int_{0}^{\frac{\pi}{2}}{\left[\frac{\sin^{\frac{3}{2}} x}{\sin^{\frac{3}{2}} x + \cos^{\frac{3}{2}} x} \right]dx}=\int_{0}^{\frac{\pi}{2}}{\left[\frac{\sin^{\frac{3}{2}} \left(\frac{\pi}{2} - x \right)}{\sin^{\frac{3}{2}} \left(\frac{\pi}{2} - x \right) + \cos^{\frac{3}{2}} \left(\frac{\pi}{2} - x \right)} \right]dx}}$

$\small{~=~\int_{0}^{\frac{\pi}{2}}{\left[\frac{\cos^{\frac{3}{2}} x}{\cos^{\frac{3}{2}} x + \sin^{\frac{3}{2}} x} \right]dx}}$

2. Now, I + I = 2I =

$\small{\int_{0}^{\frac{\pi}{2}}{\left[\frac{\sin^{\frac{3}{2}} x}{\sin^{\frac{3}{2}} x + \cos^{\frac{3}{2}} x} \right]dx}+\int_{0}^{\frac{\pi}{2}}{\left[\frac{\cos^{\frac{3}{2}} x}{\cos^{\frac{3}{2}} x + \sin^{\frac{3}{2}} x} \right]dx}=\int_{0}^{\frac{\pi}{2}}{\left[\frac{\sin^{\frac{3}{2}} x + \cos^{\frac{3}{2}} x}{\sin^{\frac{3}{2}} x + \cos^{\frac{3}{2}} x} \right]dx}}$

$\small{~=\int_{0}^{\frac{\pi}{2}}{\left[1 \right]dx}=[x]_{0}^{\frac{\pi}{2}}=\frac{\pi}{2}}$

Therefore, $\small{I = \frac{\pi}{4}}$


In the next section, we will see a few more solved examples.

Previous

Contents

Next 

Copyright©2025 Higher secondary mathematics.blogspot.com

Saturday, June 14, 2025

23.26 - Properties of Definite Integrals

In the previous section, we saw evaluation of definite integrals by substitution. We saw some solved examples also. In this section, we will see some properties of definite integrals. We have to learn about seven properties. They are named as P1, P2, P3, . . .

$\bf{{\rm{P_0}}:\int_a^b{\left[f(x) \right]dx}~=~\int_a^b{\left[f(t) \right]dt}}$

Proof:

The function is the same. Upper and lower limits are also the same. We are changing only the variable. So the definite integral will be the same.


$\bf{{\rm{P_1}}:\int_a^b{\left[f(x) \right]dx}~=~-\int_b^a{\left[f(x) \right]dx}}$

Proof can be written in 4 steps:

1. $\small{\int_a^b{\left[f(x) \right]dx}~=~F(b)\,-\,F(a)}$

2. $\small{\int_b^a{\left[f(x) \right]dx}~=~F(a)\,-\,F(b)~=~-\left[F(b)\,-\,F(a) \right]}$

3. From (2), we get:
$\small{-\int_b^a{\left[f(x) \right]dx}~=~F(b)\,-\,F(a) }$

4. Comparing the results in (1) and (3), we get:
$\small{\int_a^b{\left[f(x) \right]dx}~=~-\int_b^a{\left[f(t) \right]dx}}$

5. Note that:
$\small{\int_a^a{\left[f(x) \right]dx}~=~F(a)\,-\,F(a)~=~0}$


$\bf{{\rm{P_2}}:\int_a^b{\left[f(x) \right]dx}~=~\int_a^c{\left[f(x) \right]dx}~+~\int_c^b{\left[f(x) \right]dx}}$

Proof can be written in 3 steps:

1. $\small{\int_a^c{\left[f(x) \right]dx}~=~F(c)\,-\,F(a)}$

2. $\small{\int_c^b{\left[f(x) \right]dx}~=~F(b)\,-\,F(c)}$

3. Therefore:

$\small{\int_a^c{\left[f(x) \right]dx}~+~\int_c^b{\left[f(x) \right]dx}}$

$\small{~=~F(c)\,-\,F(a)~+~F(b)\,-\,F(c)}$

$\small{~=~F(b)\,-\,F(a)}$

$\small{~=~\int_a^b{\left[f(x) \right]dx}}$


$\bf{{\rm{P_3}}:\int_a^b{\left[f(x) \right]dx}~=~\int_a^b{\left[f(a+b-x) \right]dx}}$

Proof can be written in 3 steps:

1. Put $\small{t=a+b-x}$

$\small{\implies \frac{dt}{dx}~=~-1}$

$\small{\implies -dx~=~dt}$

2. Rearranging the limits:

   ♦ When x approach the lower limit 'a', t approach 'b'

   ♦ When x approach the upper limit 'b', t approach 'c'
   
3. So we can write:

$\small{\int_a^b{\left[f(a+b-x) \right]dx}~=~\int_a^b{\left[(-1)(-1)f(a+b-x) \right]dx}}$

$\small{~=~\int_b^a{\left[(-1)\,f(t) \right]dt}~=~(-1)\int_b^a{\left[\,f(t) \right]dt}}$

$\small{~=~\int_a^b{\left[\,f(t) \right]dt}}$ (by P1)

$\small{~=~\int_a^b{\left[\,f(x) \right]dx}}$ (by P0q) 


$\bf{{\rm{P_4}}:\int_0^a{\left[f(x) \right]dx}~=~\int_0^a{\left[f(a-x) \right]dx}}$

Proof can be written in 4 steps:

1. Put $\small{t=a-x}$

$\small{\implies \frac{dt}{dx}~=~-1}$

$\small{\implies -dx~=~dt}$

2. Rearranging the limits:

   ♦ When x approach the lower limit zero, t approach 'a'

   ♦ When x approach the upper limit 'a', t approach zero
   
3. So we can write:

$\small{\int_a^b{\left[f(a-x) \right]dx}~=~\int_a^b{\left[(-1)(-1)f(a-x) \right]dx}}$

$\small{~=~\int_a^0{\left[(-1)\,f(t) \right]dt}~=~(-1)\int_a^0{\left[\,f(t) \right]dt}}$

$\small{~=~\int_0^a{\left[\,f(t) \right]dt}}$ (by P1)

$\small{~=~\int_0^a {\left[\,f(x) \right]dx}}$ (by P0q)

4. Note that, P4 is a particular case of P3.


$\bf{{\rm{P_5}}:\int_0^{2a}{\left[f(x) \right]dx}~=~\int_0^a{\left[f(x) \right]dx}~+~\int_0^a{\left[f(2a-x) \right]dx}}$

Proof can be written in 4 steps:

1. Using P2, we can write:

$\small{\int_0^{2a}{\left[f(x) \right]dx}~=~\int_0^a{\left[f(x) \right]dx}~+~\int_a^{2a}{\left[f(x) \right]dx}}$

• We can denote this as:

$\small{\int_0^{2a}{\left[f(x) \right]dx}~=~I_1~+~I_2}$

2. Put $\small{t=2a-x}$

$\small{\implies \frac{dt}{dx}~=~-1}$

$\small{\implies -dx~=~dt}$

Also, $\small{x = 2a - t}$

3. Rearranging the limits of I2:

   ♦ When x approach the lower limit 'a', t approach 'a'

   ♦ When x approach the upper limit '2a', t approach zero
   
So I2 can be written as:

$\small{\int_a^{2a}{\left[f(x) \right]dx}~=~\int_a^0{\left[f(2a-t) \right]dx}~=~\int_a^0{\left[(-1)(-1)f(2a-t) \right]dx}}$

$\small{~=~\int_a^0{\left[(-1)\,f(2a - t) \right]dt}~=~(-1)\int_a^0{\left[\,f(2a - t) \right]dt}}$

$\small{~=~\int_0^a{\left[\,f(2a - t) \right]dt}}$ (by P1)

$\small{~=~\int_0^a {\left[\,f(2a - x) \right]dx}}$ (by P0q)

4. So from step (1), we get:

$\small{\int_0^{2a}{\left[f(x) \right]dx}~=~\int_0^a{\left[f(x) \right]dx}~+~\int_0^a {\left[\,f(2a - x) \right]dx}}$


$\bf{{\rm{P_6}}:}$

$\bf{\int_0^{2a}{\left[f(x) \right]dx}~=~2 \int_0^a{\left[f(x) \right]dx}}$
   ♦ If $\small{f(2a - x)~=~f(x)}$

$\bf{\int_0^{2a}{\left[f(x) \right]dx}~=~0}$
   ♦ If $\small{f(2a - x)~=~-f(x)}$

Proof can be written in 3 steps:

1. Using P5, we can write:

$\small{\int_0^{2a}{\left[f(x) \right]dx}~=~\int_0^a{\left[f(x) \right]dx}~+~\int_0^a {\left[\,f(2a - x) \right]dx}}$

2. If $\small{f(2a-x)~=~f(x)}$, (1) becomes:

$\small{\int_0^{2a}{\left[f(x) \right]dx}~=~\int_0^a{\left[f(x) \right]dx}~+~\int_0^a{\left[f(x) \right]dx}~=~2\int_0^a{\left[f(x) \right]dx}}$

3. If $\small{f(2a-x)~=~-f(x)}$, (1) becomes:

$\small{\int_0^{2a}{\left[f(x) \right]dx}~=~\int_0^a{\left[f(x) \right]dx}~-~\int_0^a{\left[f(x) \right]dx}~=~0}$


$\bf{{\rm{P_7}}:}$

$\bf{\int_{-a}^{a}{\left[f(x) \right]dx}~=~2 \int_0^a{\left[f(x) \right]dx}}$
   ♦ If $\small{f}$ is an even function
         ✰ That is., if $\small{f(-x)~=~f(x)}$

$\bf{\int_{-a}^{a}{\left[f(x) \right]dx}~=~0}$
   ♦ If $\small{f}$ is an odd function
         ✰ That is., if $\small{f(-x)~=~-f(x)}$

Proof can be written in 7 steps:

1. Using P2, we can write:

$\small{\int_{-a}^{a}{\left[f(x) \right]dx}~=~\int_{-a}^0{\left[f(x) \right]dx}~+~\int_0^a {\left[\,f(x) \right]dx}}$

• We can denote this as:

$\small{\int_{-a}^{a}{\left[f(x) \right]dx}~=~I_1~+~I_2}$

2. Put $\small{t=-x}$ in I1

$\small{\implies \frac{dt}{dx}~=~-1}$

$\small{\implies -dx~=~dt}$

Also, $\small{x = - t}$

3. Rearranging the limits of I1:

   ♦ When x approach the lower limit '-a', t approach 'a'

   ♦ When x approach the upper limit zero, t approach zero
   
4. So I1 can be written as:

$\small{\int_{-a}^0{\left[f(x) \right]dx}~=~\int_{a}^0{\left[f(-t) \right]dx}~=~\int_{a}^0{\left[(-1)(-1)f(-t) \right]dx}}$

$\small{~=~\int_{a}^0{\left[(-1)\,f(- t) \right]dt}~=~(-1)\int_{a}^0{\left[f(-t) \right]dt}}$

$\small{~=~(-1)\int_{a}^0{\left[f(-x) \right]dx}}$ (by P0q)

$\small{~=~\int_{0}^{a}{\left[f(-x) \right]dx}}$ (by P1)

5. So from step (1), we get:

$\small{\int_{-a}^{a}{\left[f(x) \right]dx}~=~\int_{0}^a{\left[f(-x) \right]dx}~+~\int_0^a {\left[\,f(x) \right]dx}}$

6. If $\small{f}$ is an even function, then $\small{f(-x)~=~f(x)}$

• In such a situation, step (5) becomes:

$\small{\int_{-a}^{a}{\left[f(x) \right]dx}~=~\int_{0}^a{\left[f(x) \right]dx}~+~\int_0^a {\left[\,f(x) \right]dx}~=~2\int_0^a {\left[\,f(x) \right]dx}}$

7. If $\small{f}$ is an odd function, then $\small{f(-x)~=~-f(x)}$

• In such a situation, step (5) becomes:

$\small{\int_{-a}^{a}{\left[f(x) \right]dx}~=~-\int_{0}^a{\left[f(x) \right]dx}~+~\int_0^a {\left[\,f(x) \right]dx}~=~0}$

◼ We can cite two examples related to P7:

Example 1:
This can be written in 5 steps:

1. $\small{f(x) \,=\,x^2}$ is an even function.

• Suppose that, we need to evaluate $\small{\int_{-1}^{1}{\left[x^2 \right]dx}}$

2. The usual approach is:

$\small{\int_{-1}^{1}{\left[x^2 \right]dx}\,=\,\left[\frac{x^3}{3} \right]_{-1}^1\,=\,\frac{1}{3}\,-\,\left(\frac{-1}{3} \right)\,=\,\frac{2}{3}}$

3. But by applying P7, we can straight away write:

$\small{\int_{-1}^{1}{\left[x^2 \right]dx}\,=\,2\int_{0}^{1}{\left[x^2 \right]dx}}$

$\small{\,=\,2 \left[\frac{x^3}{3} \right]_{0}^1\,=\,2\left[\frac{1}{3}\,-\,\frac{0}{3} \right]\,=\,\frac{2}{3}}$

4. We get the same result in both (2) and (3).

5. In the fig.23.24 below,

   ♦ the area of the blue region from x = -1 to x = 0 is 1/3

   ♦ the area of the blue region from x = 0 to x = 1 is also 1/3

Fig.23.24  

• Both areas are positive. So the total area from x = -1 to x = 1 will be twice (1/3)

Example 2:
This can be written in 5 steps:

1. $\small{f(x) \,=\,x^3}$ is an odd function.

• Suppose that, we need to evaluate $\small{\int_{-1}^{1}{\left[x^3 \right]dx}}$

2. The usual approach is:

$\small{\int_{-1}^{1}{\left[x^3 \right]dx}\,=\,\left[\frac{x^4}{4} \right]_{-1}^1\,=\,\frac{1}{4}\,-\,\frac{1}{4}\,=\,0}$

3. But by applying P7, we can straight away write:

$\small{\int_{-1}^{1}{\left[x^3 \right]dx}\,=\,0}$

4. We get the same result in both (2) and (3).

5. In the fig.23.25 below,

   ♦ the area of the blue region from x = -1 to x = 0 is 1/4

   ♦ the area of the blue region from x = 0 to x = 1 is also 1/4

Fig.23.25

• The area from x = -1 to x = 0 is -ve. But the area from x = 0 to x = 1 is +ve. So the total area from x = -1 to x = 1 will be zero.


Now we will see some solved examples:

Solved Example 23.96
Given that:
$\small{\int_{1}^{5}{\left[f(x) \right]dx}\,=\,-3}$
$\small{\int_{2}^{5}{\left[f(x) \right]dx}\,=\,4}$

Find:
$\small{\int_{1}^{2}{\left[f(x) \right]dx}}$
Solution:
1. Applying P2, we can write:

$\small{\int_{1}^{5}{\left[f(x) \right]dx}\,=\,\int_{1}^{2}{\left[f(x) \right]dx}\,+\,\int_{2}^{5}{\left[f(x) \right]dx}}$

2. Substituting the known values, we get:

$\small{-3\,=\,\int_{1}^{2}{\left[f(x) \right]dx}\,+\,4}$

3. Therefore,

$\small{\int_{1}^{2}{\left[f(x) \right]dx}\,=\,-3 - 4  = -7}$

Solved Example 23.97

Evaluate $\small{\int_{-2}^{3}{\left[|x| \right]dx}}$
Solution:
1. We know that:
$\left|x \right| = \begin{cases} x,  & \text{if}~x \ge 0 \\[1.5ex] -x, & \text{if}~x<0 \end{cases}$

2. The integrand changes at zero. So we will split the interval at zero. Then by applying P2, it can be written as:

$\small{\int_{-2}^{3}{\left[\left|x \right| \right]dx}\,=\,\int_{-2}^{0}{\left[\left|x \right| \right]dx}\,+\,\int_{0}^{3}{\left[\left|x \right| \right]dx}}$

• We will denote it as:

$\small{\int_{-2}^{3}{\left[\left|x \right| \right]dx}\,=\,I_1\,+\,I_2}$

3. Choosing the appropriate segments:

• For I1, we must use the segment: $\small{\left|x \right|\,=\,-x,~\text{if}~x<0}$

• For I2, we must use the segment: $\small{\left|x \right|\,=\,x,~\text{if}~x \ge 0}$

4. So from (2), we get:

$\small{\int_{-2}^{3}{\left[\left|x \right| \right]dx}\,=\,\int_{-2}^{0}{\left[-x \right]dx}\,+\,\int_{0}^{3}{\left[x \right]dx}}$

$\small{\,=\,(-1)\int_{-2}^{0}{\left[x \right]dx}\,+\,\int_{0}^{3}{\left[x \right]dx}}$

$\small{\,=\,(-1)\left[\frac{x^2}{2} \right]_{-2}^{0}\,+\,\left[\frac{x^2}{2} \right]_{0}^{3}}$

$\small{\,=\,(-1)\left[0\,-\,\frac{(-2)^2}{2} \right]\,+\,\left[\frac{3^2}{2}\,-\,0 \right]}$

$\small{\,=\,(-1)\left[-2 \right]\,+\,\left[\frac{9}{2} \right]~=~\frac{13}{2}}$

Solved Example 23.98

Evaluate $\small{\int_{-1}^{1}{\left[1\,-\,|x| \right]dx}}$
Solution:
1. We know that:
$\left|x \right| = \begin{cases} x,  & \text{if}~x \ge 0 \\[1.5ex] -x, & \text{if}~x<0 \end{cases}$

2. The integrand changes at zero. So we will split the interval at zero. Then by applying P2, it can be written as:

$\small{\int_{-1}^{1}{\left[1\,-\,\left|x \right| \right]dx}\,=\,\int_{-1}^{0}{\left[1\,-\,\left|x \right| \right]dx}\,+\,\int_{0}^{1}{\left[1\,-\,\left|x \right| \right]dx}}$

• We will denote it as:

$\small{\int_{-1}^{1}{\left[1\,-\,\left|x \right| \right]dx}\,=\,I_1\,+\,I_2}$

3. Choosing the appropriate segments:

• For I1, we must use the segment: $\small{\left|x \right|\,=\,-x,~\text{if}~x<0}$

• For I2, we must use the segment: $\small{\left|x \right|\,=\,x,~\text{if}~x \ge 0}$

4. So from (2), we get:

$\small{\int_{-1}^{1}{\left[1\,-\,\left|x \right| \right]dx}\,=\,\int_{-1}^{0}{\left[1+x \right]dx}\,+\,\int_{0}^{1}{\left[1\,-\,x \right]dx}}$

$\small{\,=\,\left[x\,+\,\frac{x^2}{2} \right]_{-1}^{0}\,+\,\left[x\,-\,\frac{x^2}{2} \right]_{0}^{1}}$

$\small{\,=\,\left[0\,+\,\frac{0^2}{2}\,-\,\left(-1\,+\,\frac{(-1)^2}{2} \right) \right]\,+\,\left[1\,-\,\frac{1^2}{2}\,-\,\left(0\,-\,\frac{0^2}{2} \right) \right]}$

$\small{\,=\,\left[-\,\left(-1\,+\,\frac{1}{2} \right) \right]\,+\,\left[1\,-\,\frac{1}{2}\,-\,0 \right]}$

$\small{\,=\,\left[1\,-\,\frac{1}{2} \right]\,+\,\left[1\,-\,\frac{1}{2}\right]}$

$\small{\,=\,\left[\frac{1}{2} \right]\,+\,\left[\frac{1}{2}\right]\,=\,1}$

Solved Example 23.99
Evaluate $\small{\int_{0}^{4}{\left[\left|x-1 \right| \right]dx}}$
Solution:
1. Let us determine the intervals where (x−1) is +ve or −ve. For that, first we solve the inequality: x−1<0

We have: $\small{x-1 < 0}$

$\small{\Rightarrow x < 1}$

• So when x is less than 1, (x−1) will be -ve.

• That means, when x is less than 1, $\small{\left|x-1 \right|\,=\,-(x-1)}$

2. Next we solve the inequality:x−1>0

We have: $\small{x-1 > 0}$

$\small{\Rightarrow x > 1}$

• So when x is greater than 1, (x-1) will be +ve.

• That means, when x is greater  than 1, $\small{\left|x-1 \right|\,=\,x-1}$

3. Also, we must solve the equation x-1 = 0

This gives x = 1

• So when x is equal to 1, (x-1) will be zero.

• That means, when x is equal to 1, $\small{\left|x-1 \right|\,=\,x-1}$

4. Now we can write a piece wise function:

$\left|x-1 \right| = \begin{cases} x-1,  & \text{if}~x \ge 1 \\[1.5ex] -(x-1), & \text{if}~x<1  \end{cases}$

5. The integrand changes at 1. So we will split the interval at 1. Then by applying P2, it can be written as:

$\small{\int_{0}^{4}{\left[\left|x-1 \right| \right]dx}\,=\,\int_{0}^{1}{\left[\left|x-1 \right| \right]dx}\,+\,\int_{1}^{4}{\left[\left|x-1 \right| \right]dx}}$

• We will denote it as:

$\small{\int_{0}^{4}{\left[\left|x-1 \right| \right]dx}\,=\,I_1\,+\,I_2}$

6. Choosing the appropriate segments:

• For I1, we must use the segment: $\small{\left|x-1 \right|\,=\,-(x-1),~\text{if}~x<1}$

• For I2, we must use the segment: $\small{\left|x-1 \right|\,=\,x-1,~\text{if}~x \ge 1}$

7. So from (5), we get:

$\small{\int_{0}^{4}{\left[\left|x-1 \right| \right]dx}\,=\,\int_{0}^{1}{\left[-(x-1) \right]dx}\,+\,\int_{1}^{4}{\left[x-1 \right]dx}}$

$\small{\,=\,(-1)\int_{0}^{1}{\left[x-1 \right]dx}\,+\,\int_{1}^{4}{\left[x-1 \right]dx}}$

$\small{\,=\,(-1)\left[\frac{x^2}{2}\,-\,x \right]_{0}^{1}\,+\,\left[\frac{x^2}{2}\,-\,x \right]_{1}^{4}}$

$\small{\,=\,(-1)\left[\frac{1^2}{2}\,-\,1\,-\,\left(\frac{0^2}{2}\,-\,0 \right) \right]\,+\,\left[\frac{4^2}{2}\,-\,4\,-\,\left(\frac{1^2}{2}\,-\,1 \right) \right]}$

$\small{\,=\,(-1)\left[\frac{1}{2}\,-\,1\,-\,\left(0 \right) \right]\,+\,\left[\frac{16}{2}\,-\,4\,-\,\left(\frac{1}{2}\,-\,1 \right) \right]}$

$\small{\,=\,(-1)\left[-\frac{1}{2} \right]\,+\,\left[4\,+\,\frac{1}{2}\right]\,=\,5}$

Solved Example 23.100
Evaluate $\small{\int_{-1}^{2}{\left[\left|x^3\,-\,x \right| \right]dx}}$
Solution:
1. Let us determine the intervals where (x3 - x) is +ve or -ve.

2. For that, first we need to solve the equation: $\small{f(x)=x^3 - x = x(x^2 - 1)=0}$

• The solution is: x = −1, x = 0 and x = 1

• So the given interval [−1,2] can be split into three intervals: [−1,0], [0,1] and [1,2]  

3. Consider the interval (−1,0). In this interval, all x values are -ve fractions. So $\small{x^2}$ will be a +ve fraction. Consequently, $\small{(x^2 - 1)}$ will be -ve and $\small{x(x^2 - 1)}$ will be +ve

So for this interval, we can write:

$\small{\left|x(x^2 - 1) \right|=x(x^2 - 1)~\text{if}~-1 < x < 0}$

4. Consider the interval (0,1). In this interval, all x values are +ve fractions. So $\small{x^2}$ will be a +ve fraction. Consequently, $\small{(x^2 - 1)}$ will be -ve and $\small{x(x^2 - 1)}$ will be -ve

So for this interval, we can write:

$\small{\left|x(x^2 - 1) \right|=-x(x^2 - 1)~\text{if}~0 < x < 1}$

5. Consider the interval (1,2). In this interval, all x values are greater than 1. So $\small{x^2}$ will be greater than 1. Consequently, $\small{(x^2 - 1)}$ will be +ve and $\small{x(x^2 - 1)}$ will be +ve.

So for this interval, we can write:

$\small{\left|x(x^2 - 1) \right|=x(x^2 - 1)~\text{if}~1 < x < 2}$

6. Consider the exact points x = −1, x = 0, x = 1 and x = 2

• When x = −1, $\small{x(x^2 - 1)} = 0$

So for this point, we can write:

$\small{\left|x(x^2 - 1) \right|= \pm x(x^2 - 1)~\text{if}~ x = -1}$

• When x = 0, $\small{x(x^2 - 1)} = 0$

So for this point, we can write:

$\small{\left|x(x^2 - 1) \right|= \pm x(x^2 - 1)~\text{if}~ x = 0}$

• When x = 1, $\small{x(x^2 - 1)} = 0$

So for this point, we can write:

$\small{\left|x(x^2 - 1) \right|= \pm x(x^2 - 1)~\text{if}~ x = 1}$

• When x = 2, $\small{x(x^2 - 1)} = 6$

So for this point, we can write:

$\small{\left|x(x^2 - 1) \right|= +x(x^2 - 1)~\text{if}~ x = 2}$

7. Combining (3), (4), (5) and (6), we can write:

$\left|x(x^2 - 1) \right| = \begin{cases} x(x^2 - 1),  & \text{if}~-1 \le x \le 0 \\[1.5ex] -x(x^2 - 1), & \text{if}~~0 \le x \le 1 \\[1.5ex] x(x^2 - 1), & \text{if}~~1 \le x \le 2  \end{cases}$

8. The integrand changes at −1, 0 and 1. So we will split the interval at those points. Then by applying P2, it can be written as:

$\small{\int_{-1}^{2}{\left[\left|x^3-x \right| \right]dx}\,=\,\int_{-1}^{2}{\left[\left|x(x^2-1) \right| \right]dx}}$

$\small{\,=\,\int_{-1}^{0}{\left[\left|x(x^2-1) \right| \right]dx}\,+\,\int_{0}^{1}{\left[\left|x(x^2-1) \right| \right]dx}\,+\,\int_{1}^{2}{\left[\left|x(x^2-1) \right| \right]dx}}$

• We will denote it as:

$\small{\int_{-1}^{2}{\left[\left|x(x^2-1) \right| \right]dx}\,=\,I_1\,+\,I_2\,+\,I_3}$

9. Choosing the appropriate segments:

• For I1, we must use the segment: $\small{\left|x(x^2-1) \right|\,=\,x(x^2-1),~\text{if}~-1 \le x \le 0}$

• For I2, we must use the segment: $\small{\left|x(x^2-1) \right|\,=\,-x(x^2-1),~\text{if}~0 \le x \le 1}$

• For I3, we must use the segment: $\small{\left|x(x^2-1) \right|\,=\,x(x^2-1),~\text{if}~1 \le x \le 2}$

10. So from (8), we get:

$\small{\int_{-1}^{2}{\left[\left|x(x^2-1) \right| \right]dx}=}$

$\small{\,=\,\int_{-1}^{0}{\left[x(x^2-1) \right]dx}\,+\,\int_{0}^{1}{\left[-x(x^2-1) \right]dx}\,+\,\int_{1}^{2}{\left[x(x^2-1) \right]dx}}$

$\small{\,=\,\int_{-1}^{0}{\left[x^3-x \right]dx}\,+\,(-1)\int_{0}^{1}{\left[x^3-x \right]dx}\,+\,\int_{1}^{2}{\left[x^3-x \right]dx}}$

$\small{\,=\,\left[\frac{x^4}{4}\,-\,\frac{x^2}{2} \right]_{-1}^{0}\,+\,(-1) \left[\frac{x^4}{4}\,-\,\frac{x^2}{2} \right]_{0}^{1}\,+\, \left[\frac{x^4}{4}\,-\,\frac{x^2}{2} \right]_{1}^{2}}$

$\small{\,=\,\left[\frac{0^4}{4}\,-\,\frac{0^2}{2}\,-\,\left(\frac{(-1)^4}{4}\,-\,\frac{(-1)^2}{2} \right) \right]\,+\,(-1)\left[\frac{1^4}{4}\,-\,\frac{1^2}{2}\,-\,\left(\frac{0^4}{4}\,-\,\frac{0^2}{2} \right) \right]}$

$\small{~~~~~~+\left[\frac{2^4}{4}\,-\,\frac{2^2}{2}\,-\,\left(\frac{1^4}{4}\,-\,\frac{1^2}{2} \right) \right]}$

$\small{\,=\,\left[0\,-\,\left(\frac{-1}{4} \right) \right]\,+\,(-1)\left[\frac{-1}{4}\,-\,\left(0 \right) \right]+\left[2\,-\,\left(\frac{-1}{4} \right) \right]}$

$\small{\,=\,\left[\frac{1}{4} \right]\,+\,\left[\frac{1}{4} \right]+\left[\frac{9}{4} \right]\,=\,\frac{11}{4}}$

Solved Example 23.101
Evaluate $\small{\int_{-1}^{0}{\left[\left|4x\,+\,3 \right| \right]dx}}$
Solution:
1. Let us determine the intervals where (4x + 3) is +ve or -ve.

2. For that, first we need to solve the inequality: $\small{4x + 3 < 0}$

• The solution can be obtained as follows:
$\small{4x + 3 - 3  < 0 - 3}$
$\small{\Rightarrow 4x  <  - 3}$
$\small{\Rightarrow x  <  - \frac{3}{4}}$

That means, when x is less than $\small{- \frac{3}{4}}$, (4x+3) will be less than zero.  

3. Next  we need to solve the inequality: $\small{4x + 3 > 0}$

• The solution can be obtained as follows:
$\small{4x + 3 - 3  > 0 - 3}$
$\small{\Rightarrow 4x  >  - 3}$
$\small{\Rightarrow x  >  - \frac{3}{4}}$

That means, when x is greater than $\small{- \frac{3}{4}}$, (4x+3) will be greater than zero.

4. We have:

 $\small{\frac{-3}{4}\,=\,-0.75}$

• So the given interval [−1,0] can be split into two intervals:

$\small{\left(-1,-0.75 \right),~\left(-0.75,0 \right)}$

5. Consider the interval (−1, −0.75)
Based on (2), we can write:
(4x+3) will be −ve in this interval

So for this interval, we can write:

$\small{\left|4x + 3 \right|= -(4x + 3)~\text{if}~-1 < x < -0.75}$

6. Consider the interval (-0.75,0)
Based on (3), we can write:
(4x+3) will be +ve in this interval

So for this interval, we can write:
$\small{\left|4x + 3 \right|= (4x + 3)~\text{if}~-0.75 < x < 0}$

7. Consider the exact points x = −1, x = −0.75, and x = 0

• When x = −1, $\small{4x + 3} = -1$

So for this point, we can write:

$\small{\left|4x + 3 \right|= -(4x + 3)~\text{if}~ x = -1}$

• When x = -0.75, $\small{4x + 3} = 0$

So for this point, we can write:

$\small{\left|4x + 3 \right|= \pm(4x + 3)~\text{if}~ x = -0.75}$

• When x = 0, $\small{4x + 3} = 3$

So for this point, we can write:

$\small{\left|4x + 3 \right|= 4x + 3~\text{if}~ x = 0}$

8. Combining (3), (4) and (5), we can write:

$\left|4x + 3 \right| = \begin{cases} -(4x + 3),  & \text{if}~-1 \le x \le -0.75  \\[1.5ex] 4x + 3, & \text{if}~~-0.75 \le x \le 0  \end{cases}$

9. The integrand changes at -0.75. So we will split the interval at that point. Then by applying P2, it can be written as:

$\small{\int_{-1}^{0}{\left[\left|4x+3 \right| \right]dx}\,=\,\int_{-1}^{-0.75}{\left[\left|4x+3 \right| \right]dx}\,+\,\int_{-0.75}^{0}{\left[\left|4x+3 \right| \right]dx}}$

• We will denote it as:

$\small{\int_{-1}^{0}{\left[\left|4x+3 \right| \right]dx}\,=\,I_1\,+\,I_2}$

10. Choosing the appropriate segments:

• For I1, we must use the segment:

$\small{\left|4x + 3 \right|\,=\,-(4x+3),~\text{if}~-1 \le x \le -0.75}$

• For I2, we must use the segment:

$\small{\left|4x + 3 \right|\,=\,4x+3,~\text{if}~-0.75 \le x \le 0}$

11. So from (9), we get:

$\small{\int_{-1}^{0}{\left[\left|4x+3 \right| \right]dx}=}$

$\small{\,=\,\int_{-1}^{-0.75}{\left[-(4x+3) \right]dx}\,+\,\int_{-0.75}^{1}{\left[4x+3 \right]dx}}$

$\small{\,=\,(-1)\int_{-1}^{-0.75}{\left[4x+3 \right]dx}\,+\,\int_{-0.75}^{1}{\left[4x+3 \right]dx}}$

$\small{\,=\,(-1)\left[\frac{4 x^2}{2}\,+\,3x \right]_{-1}^{-0.75}\,+\,\left[\frac{4 x^2}{2}\,+\,3x \right]_{-0.75}^{0}}$

$\small{\,=\,(-1)\left[2x^2\,+\,3x \right]_{-1}^{-0.75}\,+\,\left[2x^2\,+\,3x \right]_{-0.75}^{0}}$

$\small{\,=\,(-1)\left[2(-0.75)^2\,+\,3(-0.75)\,-\,\left(2(-1)^2\,+\,3(-1) \right) \right]}$

$\small{~~~~~~+\left[2(0)^2\,+\,3(0)\,-\,\left(2(-0.75)^2\,+\,3(-0.75) \right) \right]}$

$\small{\,=\,\frac{5}{4}}$

Solved Example 23.102
Evaluate $\small{\int_{-5}^{5}{\left[\left|x+2 \right| \right]dx}}$
Solution:
1. Let us determine the intervals where (x+2) is +ve or −ve. For that, first we solve the inequality: x+2<0

We have: $\small{x+2 < 0}$

$\small{\Rightarrow x < -2}$

• So when x is less than −2, (x+2) will be -ve.

• That means, when x is less than −2, $\small{\left|x+2 \right|\,=\,-(x+2)}$

2. Next we solve the inequality: x+2>0

We have: $\small{x+2 > 0}$

$\small{\Rightarrow x > -2}$

• So when x is greater than −2, (x+2) will be +ve.

• That means, when x is greater  than −2, $\small{\left|x+2 \right|\,=\,x+2}$

3. Also, we must solve the equation x+2 = 0

This gives x = −2

• So when x is equal to −2, (x+2) will be zero.

• That means, when x is equal to −2, $\small{\left|x+2 \right|\,=\,x+2}$

4. Now we can write a piece wise function:

$\left|x+2 \right| = \begin{cases} x+2,  & \text{if}~x \ge -2 \\[1.5ex] -(x+2), & \text{if}~x<-2  \end{cases}$

5. The integrand changes at -2. So we will split the interval at -2. Then by applying P2, it can be written as:

$\small{\int_{-5}^{5}{\left[\left|x+2 \right| \right]dx}\,=\,\int_{-5}^{-2}{\left[\left|x+2 \right| \right]dx}\,+\,\int_{-2}^{5}{\left[\left|x+2 \right| \right]dx}}$

• We will denote it as:

$\small{\int_{-5}^{5}{\left[\left|x+2 \right| \right]dx}\,=\,I_1\,+\,I_2}$

6. Choosing the appropriate segments:

• For I1, we must use the segment: $\small{\left|x+2 \right|\,=\,-(x+2),~\text{if}~x<-2}$

• For I2, we must use the segment: $\small{\left|x+2 \right|\,=\,x+2,~\text{if}~x \ge -2}$

7. So from (5), we get:

$\small{\int_{-5}^{5}{\left[\left|x+2 \right| \right]dx}\,=\,\int_{-5}^{-2}{\left[-(x+2) \right]dx}\,+\,\int_{-2}^{5}{\left[x+2 \right]dx}}$

$\small{\,=\,(-1)\int_{-5}^{-2}{\left[x+2 \right]dx}\,+\,\int_{-2}^{5}{\left[x+2 \right]dx}}$

$\small{\,=\,(-1)\left[\frac{x^2}{2}\,+\,2x \right]_{-5}^{-2}\,+\,\left[\frac{x^2}{2}\,+\,2x \right]_{-2}^{5}}$

$\small{\,=\,(-1)\left[\frac{(-2)^2}{2}\,+\,2(-2)\,-\,\left(\frac{(-5)^2}{2}\,+\,2(-5) \right) \right]\,+\,\left[\frac{5^2}{2}\,+\,10\,-\,\left(\frac{(-2)^2}{2}\,+\,2(-2) \right) \right]}$

$\small{\,=\,(-1)\left[2\,-\,4\,-\,\left(\frac{25}{2}\,-\,10 \right) \right]\,+\,\left[\frac{25}{2}\,+\,10\,-\,\left(2\,-\,4 \right) \right]}$

$\small{\,=\,(-1)\left[-2\,-\,\left(\frac{25}{2}\,-\,10 \right) \right]\,+\,\left[\frac{25}{2}\,+\,10\,+\,2 \right]}$

$\small{\,=\,2+\frac{25}{2}-10+\frac{25}{2}+12~=~29}$

Solved Example 23.103
Evaluate $\small{\int_{2}^{8}{\left[\left|x-5 \right| \right]dx}}$
Solution:
1. Let us determine the intervals where (x−5) is +ve or −ve. For that, first we solve the inequality: x−5<0

We have: $\small{x-5 < 0}$

$\small{\Rightarrow x < 5}$

• So when x is less than 5, (x−5) will be -ve.

• That means, when x is less than 5, $\small{\left|x-5 \right|\,=\,-(x-5)}$

2. Next we solve the inequality:x−5>0

We have: $\small{x-5 > 0}$

$\small{\Rightarrow x > 5}$

• So when x is greater than 5, (x-5) will be +ve.

• That means, when x is greater  than 5, $\small{\left|x-5 \right|\,=\,x-5}$

3. Also, we must solve the equation x-5 = 0

This gives x = 5

• So when x is equal to 5, (x-5) will be zero.

• That means, when x is equal to 5, $\small{\left|x-5 \right|\,=\,x-5}$

4. Now we can write a piece wise function:

$\left|x-5 \right| = \begin{cases} x-5,  & \text{if}~x \ge 5 \\[1.5ex] -(x-5), & \text{if}~x<5  \end{cases}$

5. The integrand changes at 5. So we will split the interval at 5. Then by applying P2, it can be written as:

$\small{\int_{2}^{8}{\left[\left|x-5 \right| \right]dx}\,=\,\int_{2}^{8}{\left[\left|x-5 \right| \right]dx}\,+\,\int_{2}^{8}{\left[\left|x-5 \right| \right]dx}}$

• We will denote it as:

$\small{\int_{2}^{8}{\left[\left|x-5 \right| \right]dx}\,=\,I_1\,+\,I_2}$

6. Choosing the appropriate segments:

• For I1, we must use the segment: $\small{\left|x-5 \right|\,=\,-(x-5),~\text{if}~x<5}$

• For I2, we must use the segment: $\small{\left|x-5 \right|\,=\,x-5,~\text{if}~x \ge 5}$

7. So from (5), we get:

$\small{\int_{2}^{8}{\left[\left|x-5 \right| \right]dx}\,=\,\int_{2}^{5}{\left[-(x-5) \right]dx}\,+\,\int_{5}^{8}{\left[x-5 \right]dx}}$

$\small{\,=\,(-1)\int_{2}^{5}{\left[x-5 \right]dx}\,+\,\int_{5}^{8}{\left[x-5 \right]dx}}$

$\small{\,=\,(-1)\left[\frac{x^2}{2}\,-\,5x \right]_{2}^{5}\,+\,\left[\frac{x^2}{2}\,-\,5x \right]_{5}^{8}}$

$\small{\,=\,(-1)\left[\frac{5^2}{2}\,-\,25\,-\,\left(\frac{2^2}{2}\,-\,10 \right) \right]\,+\,\left[\frac{8^2}{2}\,-\,40\,-\,\left(\frac{5^2}{2}\,-\,25 \right) \right]}$

$\small{\,=\,(-1)\left[\frac{25}{2}\,-\,25\,-\,\left(2\,-\,10 \right) \right]\,+\,\left[32\,-\,40\,-\,\left(\frac{25}{2}\,-\,25 \right) \right]}$

$\small{\,=\,(-1)\left[\frac{25}{2}\,-\,25\,-\,2\,+\,10  \right]\,+\,\left[32\,-\,40\,-\,\frac{25}{2}\,+\,25  \right]}$

$\small{\,=\,(-1)\left[\frac{25}{2}\,-\,17  \right]\,+\,\left[17-\,\frac{25}{2}  \right]}$

$\small{\,=\,\frac{-25}{2}+17+17-\frac{25}{2}~=~-25+34~=~9}$


In the next section, we will see a few more solved examples.

Previous

Contents

Next 

Copyright©2025 Higher secondary mathematics.blogspot.com