Tuesday, February 27, 2024

19.9 - Multiplicative Identity

In the previous section, we saw two properties of multiplication of matrices. In this section, we will see the third property.

Property III: The existence of multiplicative identity
• Consider any square matrix A of the order (m×m).
• We can write an identity matrix I of the same order.
That I will satisfy the equation: AI = IA = A
• Let us see an example. It can be written in 4 steps:

1. Let A = $\left[\begin{array}{r}                           
-8    &{    2    }    &{    5    }    \\
0    &{    -7    }    &{    -3    }    \\
3    &{    2    }    &{    4    }    \\
\end{array}\right]$

• Then I = $\left[\begin{array}{r}                           
1    &{    0    }    &{    0    }    \\
0    &{    1    }    &{    0    }    \\
0    &{    0    }    &{    1    }    \\
\end{array}\right]                           
$               

2. First we find AI:

3. Next we find IA:


4. Based on (2) and (3), we can write:
AI = IA = A

◼ We will see the actual proof in higher classes.


Now we will see a solved example.

Solved example 19.14
If A = $\left[\begin{array}{r}                           
1    &{    3    }    &{    2    }    \\
2    &{    0    }    &{    -1    }    \\
1    &{    2    }    &{    3    }    \\
\end{array}\right]                           
$, then show that A3 - 4A2 - 3A + 11I = O
Solution:
1. First we will write A2:


2. Next we will write A3:

3. Next we will write 4A2:

3. Next we will write 3A:


4. Finally we will write 11I:


5. Substituting the values, we get:



The link below gives a few more solved examples:

Exercise 19.2


In the next section, we will see transpose of a matrix.

Previous

Contents

Next

Copyright©2024 Higher secondary mathematics.blogspot.com

Sunday, February 25, 2024

19.8 - Properties of Multiplication of Matrices

In the previous section, we saw that, multiplication of matrices is not commutative. In this section, we will see some properties of multiplication of matrices.

Multiplication of matrices possesses three properties.
Property I: The associative law
• If A, B and C are three matrices, then (AB)C = A(BC)
• For this property to be applicable, the following matrices should be defined:
AB, BC, A(BC) and (AB)C.
• Let us see an example. It can be written in 4 steps:

1. Let the three matrices be:
A = $\left[\begin{array}{r}                           
7    &{    -4    }    &{    3    }    \\
-2    &{    6    }    &{    8    }    \\
-3    &{    9    }    &{    -2    }    \\
\end{array}\right]                           
$, B = $\left[\begin{array}{r}               
2    &{    1    }    \\
-4    &{    6    }    \\
5    &{    3    }    \\
\end{array}\right]               
$ and C = $\left[\begin{array}{r}                                       
3    &{    5    }    &{    9    }    &{    0    }    \\
6    &{    7    }    &{    4    }    &{    2    }    \\
\end{array}\right]                                       
$

2. First we find (AB)C:


3. Next we find A(BC):


4. Based on (2) and (3), we can write:
(AB)C = A(BC)

◼ We will see the actual proof in higher classes.

Property II: The distributive law
• If A, B and C are three matrices, then:
(i) A(B+C) = AB + AC
(ii) (A+B)C = AC + BC
• For this property to be applicable, the following matrices should be defined:
AB, BC, AC, A(B+C) and (A+B)C.

• Let us see an example for part (i). It can be written in 4 steps:

1. Let the three matrices be:
A = $\left[\begin{array}{r}                           
10    &{    -7    }    &{    14    }    \\
7    &{    31    }    &{    3    }    \\
\end{array}\right]$,
B = $\left[\begin{array}{r}               
-7    &{    0    }    \\
8    &{    -2    }    \\
6    &{    3    }    \\
\end{array}\right]$
and C = $\left[\begin{array}{r}                
3    &{    -4    }    \\
12    &{    15    }    \\
9    &{    8    }    \\
\end{array}\right]$

2. First we find A(B+C):


3. Next we find AB + AC:


4. Based on (2) and (3), we can write:
A(B+C) = AB+AC

◼ We will see the actual proof in higher classes.


• Let us see an example for part (ii). It can be written in 4 steps:

1. Let the three matrices be:
A = $\left[\begin{array}{r}                           
-8    &{    2    }    &{    5    }    \\
0    &{    -7    }    &{    -3    }    \\
3    &{    2    }    &{    4    }    \\
\end{array}\right]$,
B = $\left[\begin{array}{r}                            
3    &{    9    }    &{    12    }    \\
7    &{    -4    }    &{    5    }    \\
8    &{    6    }    &{    15    }    \\
\end{array}\right]$
and C = $\left[\begin{array}{r}                                       
6     \\
4    \\
-7     \\
\end{array}\right]                                       
$

2. First we find (A+B)C:


3. Next we find AC+BC:

4. Based on (2) and (3), we can write:
(A+B)C = AC + BC

◼ We will see the actual proof in higher classes.


In the next section, we will see the third property. 

Previous

Contents

Next

Copyright©2024 Higher secondary mathematics.blogspot.com

Friday, February 23, 2024

19.7 - Non-commutativity of Multiplication of Matrices

In the previous section, we saw the basics about multiplication of matrices. In this section, we will see that, multiplication of matrices is not commutative.

This can be explained in 12 steps:
1. If AB = BA for all A and B, we can say that, multiplication is commutative.
2. If we can show atleast one example where AB is not equal to BA, we will be able to say that, multiplication of matrices is not commutative.
3. Let A = $\left[\begin{array}{r}           
3    &{1}    &{-7}    \\
-5    &{10}    &{4}    \\
\end{array}\right]           
$ and B = $\left[\begin{array}{r}       
12    &{4}    \\
2    &{3}    \\
6    &{8}    \\
\end{array}\right]       
$.
• A is of the order 2×3
• B is of the order 3×2
• So both AB and BA are defined.
4. AB can be calculated as shown below:

$\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{AB}    & {~=~}    &{\left[\begin{array}{r} 3&{1}&{-7}\\ -5&{10}&{4}\\ \end{array}\right] \left[\begin{array}{r} 12&{4}\\ 2&{3}\\ 6&{8}\\ \end{array}\right] }    \\
{~\color{magenta}    2    }    &{{}}    &{{}}    & {~=~}    &{\left[\begin{array}{r} 3(12)+1(2)+(-7)(6)&{3(4)+1(3)+(-7)(8)}\\ (-5)(12)+10(2)+4(6)&{(-5)(4)+10(3)+4(8)}\\ \end{array}\right] }    \\
{~\color{magenta}    3    }    &{{}}    &{{}}    & {~=~}    &{\left[\begin{array}{r} -4&{-41}\\ -16&{42}\\ \end{array}\right] }    \\
\end{array}$                           

5. Also, BA can be calculated as shown below:

$\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{BA}    & {~=~}    &{\left[\begin{array}{r} 12&{4}\\ 2&{3}\\ 6&{8}\\ \end{array}\right]\left[\begin{array}{r} 3&{1}&{-7}\\ -5&{10}&{4}\\ \end{array}\right]}    \\
{~\color{magenta}    2    }    &{{}}    &{{}}    & {~=~}    &{\left[\begin{array}{r} 12(3)+4(-5)&{12(1)+4(10)}&{12(-7)+4(4)}\\ 2(3)+3(-5)&{2(1)+3(10)}&{2(-7)+3(4)}\\ 6(3)+8(-5)&{6(1)+8(10)}&{6(-7)+8(4)}\\ \end{array}\right] }    \\
{~\color{magenta}    3    }    &{{}}    &{{}}    & {~=~}    &{\left[\begin{array}{r} 16&{52}&{-68}\\ -9&{32}&{-2}\\ -22&{86}&{-10}\\ \end{array}\right] }    \\
\end{array}$                           

6. We see that AB ≠ BA.
• Here, AB is of the order 2×2 and BA is of the order 3×3. So AB will never be equal to BA.
7. There may be some cases where AB and BA are of the same order. Let us see such an example:
8. Let A = $\left[\begin{array}{r}           
1    &{0}      \\
0    &{-1}   \\
\end{array}\right]           
$ and B =  $\left[\begin{array}{r}       
0    &{1}    \\
1    &{0}    \\
\end{array}\right]       
$.
9. Then AB can be calculated as shown below:
$\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{AB}    & {~=~}    &{\left[\begin{array}{r}           
1    &{0}      \\
0    &{-1}   \\
\end{array}\right]
\left[\begin{array}{r}       
0    &{1}    \\
1    &{0}    \\
\end{array}\right] }    \\
{~\color{magenta}    2    }    &{{}}    &{{}}    & {~=~}    &{\left[\begin{array}{r} 1(0)+0(1)&{1(1)+0(0)}\\ (0)(0)+(-1)(1)&{0(1)+(-1)(0)}\\ \end{array}\right] }    \\
{~\color{magenta}    3    }    &{{}}    &{{}}    & {~=~}    &{\left[\begin{array}{r} 0&{1}\\ -1&{0}\\ \end{array}\right] }    \\
\end{array}$   
10. Also, BA can be calculated as shown below:
$\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{BA}    & {~=~}    &{
\left[\begin{array}{r}       
0    &{1}    \\
1    &{0}    \\
\end{array}\right] \left[\begin{array}{r}           
1    &{0}      \\
0    &{-1}   \\
\end{array}\right]}    \\
{~\color{magenta}    2    }    &{{}}    &{{}}    & {~=~}    &{\left[\begin{array}{r} 0(1)+1(0)&{0(0)+1(-1)}\\ 1(1)+0(0)&{1(0)+0(-1)}\\ \end{array}\right] }    \\
{~\color{magenta}    3    }    &{{}}    &{{}}    & {~=~}    &{\left[\begin{array}{r} 0&{-1}\\ 1&{0}\\ \end{array}\right] }    \\
\end{array}$
11. Here, AB is of the order 2×2 and BA is also of the order 2×2. We see that AB ≠ BA
12. We can write:
Even if AB and BA are of the same order, we can show at least one example where AB ≠ BA. So multiplication of matrices is not commutative.


If A and B are both diagonal matrices, and of the same order, then AB will be equal to BA. Two examples are shown below:

Multiplication of diagonal matrices of the same order is commutative.
Fig.19.23

• The reader may write the calculation steps of the above examples in his/her notebooks.

Zero matrix as a product of two non zero matrices

• If a and b are two real numbers and ab=0, then a or b has to be zero.
• But this is not applicable for matrices. An example is shown below:

$\left[\begin{array}{r}       
0    &{-1}    \\
0    &{2}    \\
\end{array}\right]\left[\begin{array}{r}       
3    &{5}    \\
0    &{0}    \\
\end{array}\right] = \left[\begin{array}{r}       
0    &{0}    \\
0    &{0}    \\
\end{array}\right]   
$                           

• So we can write:
If the product of two matrices is a zero matrix, it is not necessary that, one of the matrices is a zero matrix.


In the next section, we will see properties of multiplication of matrices. 

Previous

Contents

Next

Copyright©2024 Higher secondary mathematics.blogspot.com

Thursday, February 22, 2024

19.6 - Multiplication of Matrices

In the previous section, we completed a discussion on multiplication of matrix by a scalar. In this section, we will see multiplication of matrices.

Multiplication of two matrices can be explained using an example. It can be written in 5 steps:
1. Consider three students: Student X, Student Y and Student Z.
• They want to buy some notebooks, pens and pencils.
    ♦ X requires 8 notebooks, 3 pens and 2 pencils.  
    ♦ Y requires 7 notebooks, 5 pens and 3 pencils.
    ♦ Z requires 11 notebooks, 4 pens and 2 pencils.
• This is shown as the matrix A in fig.19.20 below:

Fig.19.20

2. The students go to a nearby store. there:
    ♦ Notebooks cost Rs. 25 each.
    ♦ Pens cost Rs. 12 each.
    ♦ Pencils cost Rs. 5 each.
• This is shown as the matrix B in fig.19.20 above.
3. Using the data in the matrices A and B, we can calculate the payments to be made.
• For student X,
   ♦ Cost of notebooks = 8 × 25
   ♦ Cost of pens = 3 × 12
   ♦ Cost of pencils = 2 × 5
• So total payment to be made by student X =  (8 × 25) + (3 × 12) + (2 × 5) = 246
• This is same as: (a11 × b11) + (a12 × b21) + (a13 × b31) = c11.
• The sum 246, is the element c11 of matrix C. This is shown in fig.19.20 above.
4. In this way, we can find the payment to be made by each student. The method is shown below:

$\begin{array}{ll} {~\color{magenta}    1    }    &{\text{Student X}}    &{(8 × 25) + (3 × 12) + (2 × 5)}    & {~=~}    &{246}    \\
{~\color{magenta}    2    }    &{\implies}    &{(a_{11} × b_{11})\,+\,(a_{12} × b_{21})\,+\,(a_{13} × b_{31})}    & {~=~}    &{c_{11}}    \\
{~\color{magenta}    3    }    &{\text{Student Y}}    &{(7 × 25) + (5 × 12) + (3 × 5)}    & {~=~}    &{250}    \\
{~\color{magenta}    4    }    &{\implies}    &{(a_{21} × b_{11})\,+\,(a_{22} × b_{21})\,+\,(a_{23} × b_{31})}    & {~=~}    &{c_{21}}    \\
{~\color{magenta}    5    }    &{\text{Student Z}}    &{(11 × 25) + (4 × 12) + (2 × 5)}    & {~=~}    &{333}    \\
{~\color{magenta}    6    }    &{\implies}    &{(a_{31} × b_{11})\,+\,(a_{32} × b_{21})\,+\,(a_{33} × b_{31})}    & {~=~}    &{c_{31}}    \\
\end{array}$

• The reader is advised to check the above steps and recognize the neat pattern that exists between aij, bij and cij.

5. It is clear that,
    ♦ Each row of matrix A is multiplied by the column of matrix B.
    ♦ Such a multiplication and subsequent summation, gives the matrix C.
We can write: AB = C


Let us see another example. It can be written in 6 steps:

1. Consider the same three students in the previous example: Student X, Student Y and Student Z.
Their requirements are also the same. So matrix A is the same. It is shown in fig.19.21 below:

Fig.19.21

2. This time the students decide to check another store. So we will name the first store as I and the second store as II.
• At store II:
    ♦ Notebooks cost Rs. 24 each.
    ♦ Pens cost Rs. 14 each.
    ♦ Pencils cost Rs. 6 each.
• The prices at the two stores can be written together as a matrix. This is shown as the matrix D in fig.19.21 above.
3. Using the data in the matrices A and D, we can calculate the payments to be made.
• For student X,
   ♦ Cost of notebooks = 8 × 24
   ♦ Cost of pens = 3 × 14
   ♦ Cost of pencils = 2 × 6
• So total payment to be made by student X =  (8 × 24) + (3 × 14) + (2 × 6) = 246
• This is same as: (a11 × d12) + (a12 × d22) + (a13 × d32) = e12.
• The sum 246, is the element e12 of matrix E. This is shown in fig.19.21 above.
4. In this way, we can find the payment to be made by each student. The method is shown below:

$\begin{array}{ll} {~\color{magenta}    1    }    &{\text{Student X}}    &{(8 × 24) + (3 × 14) + (2 × 6)}    & {~=~}    &{246}    \\
{~\color{magenta}    2    }    &{\implies}    &{(a_{11} × d_{12})\,+\,(a_{12} × d_{22})\,+\,(a_{13} × d_{32})}    & {~=~}    &{e_{11}}    \\
{~\color{magenta}    3    }    &{\text{Student Y}}    &{(7 × 24) + (5 × 14) + (3 × 6)}    & {~=~}    &{256}    \\
{~\color{magenta}    4    }    &{\implies}    &{(a_{21} × d_{21})\,+\,(a_{22} × d_{22})\,+\,(a_{23} × d_{32})}    & {~=~}    &{e_{22}}    \\
{~\color{magenta}    5    }    &{\text{Student Z}}    &{(11 × 24) + (4 × 14) + (2 × 6)}    & {~=~}    &{332}    \\
{~\color{magenta}    6    }    &{\implies}    &{(a_{31} × d_{12})\,+\,(a_{32} × d_{22})\,+\,(a_{33} × d_{32})}    & {~=~}    &{e_{32}}    \\
\end{array}$

• In this way the second column of matrix E is calculated.
• The reader is advised to check the above steps and recognize the neat pattern that exists between aij, dij and eij.

5. It is clear that,
    ♦ Each row of matrix A is multiplied by the second column of matrix D.
    ♦ Such a multiplication and subsequent summation, gives the second column of matrix E. (the first column is same as in the previous example)
We can write: AD = E

6. Now we can compare the matrix C from the first example and matrix E from the second example.
• If the students go to the store II,
    ♦ They will suffer a loss of Rs.6/- in the case of student Y.
    ♦ They will get a gain of Rs.1/- in the case of student Z.
    ♦ So they will suffer a net loss of Rs.5/- 


Let us see one more example.

If A = $\left[\begin{array}{r}           
3    &{-4}    &{1}    \\
0    &{7}    &{4}    \\
\end{array}\right]           
$ and B = $\left[\begin{array}{r}       
4    &{9}    \\
-8    &{2}    \\
5    &{-2}    \\
\end{array}\right]       
$, then find AB

This time, we will avoid the detailed steps:
• Multiply green rectangle by the yellow rectangle. The summation will give c11. See fig.19.22 below:

For matrix multiplication, each row of the first matrix is multiplied by each column of the second matrix element wise, and then added.
Fig.19.22

• Multiply green rectangle by the magenta rectangle. The summation will give c12.
• Multiply red rectangle by the yellow rectangle. The summation will give c21.
• Multiply red rectangle by the magenta rectangle. The summation will give c22.


Based on the three examples, we can write two important points:
1. We are given two matrices A and B.
• We will be able to calculate AB only if:
Number of columns in A = Number of rows in B
• In other words:
    ♦ If A is of the order (m×n),
    ♦ Then B must be of the order (n×p).
2. When we multiply A of order (m×n) and B of order (n×p), the order of the resulting AB will be (m×p).


Now we will see a solved example:

Solved example 19.13
Find AB if A = $\left[\begin{array}{r}       
14    &{12}    \\
7    &{8}    \\
\end{array}\right]       
$ and B = $\left[\begin{array}{r}           
5    &{4}    &{8}    \\
9    &{7}    &{3}    \\
\end{array}\right]           
$.
Solution:

$\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{AB}    & {~=~}    &{\left[\begin{array}{r} 14&{12}\\ 7&{8}\\ \end{array}\right] \left[\begin{array}{r} 5&{4}&{8}\\ 9&{7}&{3}\\ \end{array}\right] }    \\
{~\color{magenta}    2    }    &{{}}    &{{}}    & {~=~}    &{\left[\begin{array}{r} 14(5)+12(9)&{14(4)+12(7)}&{14(8)+12(3)}\\ 7(5)+8(9)&{7(4)+8(7)}&{7(8)+8(3)}\\ \end{array}\right] }    \\
{~\color{magenta}    3    }    &{{}}    &{{}}    & {~=~}    &{\left[\begin{array}{r} 70+108 &{56+84}&{112+36}\\ 35+72&{28+56}&{56+24}\\ \end{array}\right] }    \\
{~\color{magenta}    4    }    &{{}}    &{{}}    & {~=~}    &{\left[\begin{array}{r} 178 &{140}&{148}\\ 107&{84}&{80}\\ \end{array}\right] }    \\
\end{array}$


Let us see some interesting facts. They can be written in 4 steps:
1. In the above solved example, we saw that, AB is possible.
• This is because:
Number of columns in A = Number of rows in B = 3.
2. Is BA possible?
    ♦ Number of columns in B = 3
    ♦ Number of rows in A = 2
• We see that:
Number of columns in B ≠ Number of rows in A.
• So it is not possible to find BA. In other words, BA is not defined.
3. So we can write:
"AB being defined", gives no guarantee that, BA is also defined.
4. What is the condition for both AB and BA to be defined?
• Answer can be written in 8 steps:
(i) Given two matrices A and B
    ♦ A is of the order (m×n)
    ♦ B is of the order (k×l)
(ii) Suppose that, AB is defined. Then n = k = u
(iii) For checking BA, we consider the orders (k×l) and (m×n).
(iv) For BA to be defined, l and m must be equal. That is., l = m = v
(v) Based of (ii) and (iv), we can write:
    ♦ order of A = (m×n) = (v×u) 
    ♦ order of B = (k×l) = (u×v)
(vi) So we can write:
• If both AB and BA is to be defined, then:
Order of A must be (v×u) and that of B must be (u×v)
(that is., u and v are interchanged)
(vii) For example, A and B are of the orders (3×4) and (4×3) respectively, then both AB and BA are defined.
(viii) A particular case arises when A and B are square matrices of the same order.
• In such a situation, u will be equal to v. Then, interchanging u and v will give the same order.
• So we can write:
If A and B are two square matrices of the same order, then both AB and BA are defined.


In the next section, we will see that multiplication of matrices is not commutative. 

Previous

Contents

Next

Copyright©2024 Higher secondary mathematics.blogspot.com

Monday, February 19, 2024

19.5 - Solved Examples

In the previous section, we saw negative matrix and difference of two matrices. We also saw multiplication of matrix by a scalar and a solved example. In this section, we will see a few more solved examples.

Solved example 19.10
Find X and Y if:
X + Y = $\left[\begin{array}{r}       
5    &{2}    \\
0    &{9}    \\
\end{array}\right]       
$ and X − Y = $\left[\begin{array}{r}       
3    &{6}    \\
0    &{-1}    \\
\end{array}\right]$.
Solution:

Fig.19.14


Solved example 19.10

Find the values of x and y from the following equation:
$2\left[\begin{array}{r}       
x    &{5}    \\
7    &{y-3}    \\
\end{array}\right] +
\left[\begin{array}{r}       
3    &{-4}    \\
1    &{2}    \\
\end{array}\right] =
\left[\begin{array}{r}       
7    &{6}    \\
15    &{14}    \\
\end{array}\right]       
$
Solution:

Fig.19.15

◼ Remarks:
5,6: Equations are obtained by equating corresponding elements.
7,8: x and y values are obtained by solving the equations.

Solved example 19.11
Two farmers Ramkishan and Gurcharan Singh cultivates only three varieties of rice namely, Basmati, Permal and Naura. The sale (in rupees) of these varieties of rice by both the farmers in the month of September and October are given by the following matrices A and B.

Fig.19.16

(i) Find the combined sales in September and October for each farmer in each variety.
(ii) Find the decrease in sales from September to October.
(iii) If both farmers receive 2% profit on gross sales, compute the profit for each farmer and for each variety sold in October.
Solution:
Part (i):
The combined sales for the two months can be obtained by adding A and B. We get:

Fig.19.17

• Let us write a sample information that can be obtained from (A+B):
When the two months of September and October are taken together, Gurcharan Singh achieved a sale of Rs.20000/- in the case of Naura rice.

Part (ii):
The decrease in sales can be obtained by subtracting B from A. We get:

Fig.19.18

• Let us write two sample information that can be obtained from (A−B):

1. Compared to September, Ramkishan experienced a decrease of Rs.10000/- in the sale of Permal rice in october. 

2. Compared to September, Gurcharan Singh did not experience any increase or decrease in the sale of Naura rice in october.

Part (iii):

First we will see an example. It can be written in steps:
1. Consider the matrix for October.
2. We see that, Ramkishan achieved a sale of Rs.5000/- in the case of Basmati rice. This amount includes the profit obtained.
3. Given that, profit is 2%.
• So if x is the original cost, then (x  × 1.02) = 5000
4. If p is the amount obtained as profit, then (5000 - x) = p
5. Solving the equations in (3) and (4), we get:
p = 5000 × 0.02
6. It is clear that:
To find the profit amount (or simply profit), we need to multiply the sales amount by 0.02.
7. To find the profit for each product, for each farmer, in just one step, we multiply the October matrix by 0.02. We get:

Fig.19.19

• Let us write a sample information that can be obtained from 0.02B:
In the month of October, Gurcharan Singh obtained a profit of Rs.400/- in the case of Basmati rice.


In the next section, we will see multiplication of matrices. 

Previous

Contents

Next

Copyright©2024 Higher secondary mathematics.blogspot.com

Saturday, February 17, 2024

19.4 - Multiplication of a Matrix by a scalar

In the previous section, we saw addition of matrices. In this section, we will see multiplication of matrix by a scalar.

This can be written in 3 steps:
1. In the previous section, we saw the industrialist and his two factories . Suppose that, the industrialist wants to triple the production in factory B.
2. The new quantities in factory B can be obtained simply by multiplying each element of matrix B by 3.
• We get:
3B = $3 \times\left[\begin{array}{r}        
15    &{25}    \\
30    &{37}    \\
60    &{42}    \\
\end{array}\right] =
\left[\begin{array}{r}        
3 × 15    &{3 × 25}    \\
3 × 30    &{3 × 37}    \\
3 × 60    &{3 × 42}    \\
\end{array}\right] =
\left[\begin{array}{r}        
45    &{75}    \\
90    &{111}    \\
180    &{126}    \\
\end{array}\right]        
$
3. Using symbols, we can write:
kA = k[aij]m×n = [kaij]m×n


Negative of a matrix

This can be written in 3 steps:
1. We have seen the technique used for multiplication by a scalar. If the scalar is −1, we will get the negative of the matrix.
2. Let us see an example:
If A = $\left[\begin{array}{r}        
5    &{2}    \\
−3    &{7}    \\
x    &{4}    \\
\end{array}\right]$, then:
−A = $−1 \times\left[\begin{array}{r}        
5    &{2}    \\
−3    &{7}    \\
x    &{4}    \\
\end{array}\right] =
\left[\begin{array}{c}        
−1 × 5    &{−1 × 2}    \\
−1 × −3    &{−1 × 7}    \\
−1 × x    &{−1 × 4}    \\
\end{array}\right] =
\left[\begin{array}{r}        
−5    &{−2}    \\
3    &{−7}    \\
−x    &{−4}    \\
\end{array}\right]        
$
3. We can write:
If A is a given matrix, then negative of A = −A = (−1)A


Difference of matrices

This can be written in 3 steps:
1. If A and B are two matrices, then the difference A−B is defined as:
A−B = A + (−B)
2. That means, to find the difference, we take the negative of B and then add it to A.
3. Let us see an example:
If A = $\left[\begin{array}{r}           
2    &{5}    &{−1}    \\
6    &{3}    &{9}    \\
\end{array}\right]           
$ and B = $\left[\begin{array}{r}           
11    &{6}    &{4}    \\
−3    &{12}    &{7}    \\
\end{array}\right]           
$, then find 2A−B
Solution:
$\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{2A−B}    & {~=~}    &{2\left[\begin{array}{r}    2 &{5} &{−1} \\ 6 &{3} &{9} \\ \end{array}\right]    − \left[\begin{array}{r}    11 &{6} &{4} \\ −3 &{12} &{7} \\ \end{array}\right]    }    \\
{~\color{magenta}    2    }    &{{}}    &{{}}    & {~=~}    &{\left[\begin{array}{r} 4&{10}&{−2}\\ 12&{6}&{18}\\ \end{array}\right] +\left[\begin{array}{r} −11&{−6}&{−4}\\ 3&{−12}&{−7}\\ \end{array}\right] }    \\
{~\color{magenta}    3    }    &{{}}    &{{}}    & {~=~}    &{\left[\begin{array}{r} 4 – 11&{10−6}&{−2−4}\\ 12+3&{6−12}&{18−7}\\ \end{array}\right] }    \\
{~\color{magenta}    4    }    &{{}}    &{{}}    & {~=~}    &{\left[\begin{array}{r} −7&{4}&{−6}\\ 15&{−6}&{11}\\ \end{array}\right] }    \\
\end{array}                           
$


Properties of scalar multiplication of a matrix

If A = [aij]m×n and B = [bij]m×n are two matrices of the same order m×n, then scalar multiplication will satisfy the following two properties:
(i) k(A+B) = kA + kB
(ii) (k+l)A = kA + lA

Part (i)
• Proof can be written in 10 steps:
1. A + B = [aij] + [bij] = [aij + bij]
We already saw this when we discussed matrix addition.
2. So k(A+B) = k[aij + bij]
• (aij + bij) is a number, written as the sum of two numbers.
• (aij + bij) represents each element in the sum matrix (A+B)
• We know that, for scalar multiplication, each element is to be multiplied by the scalar.
• So we get:
k[aij + bij] = [k(aij + bij)]
3. So the expression in (2) can be modified as:
k(A+B) = [k(aij + bij)]
4. aij and bij are numbers. So the expression in (3) can be modified as:
k(A+B) = [k aij + k bij]
5. Consider the R.H.S of the expression in (4).
It is the sum of two matrices: [k aij] and [k bij]
6. So the expression in (4) can be modified as:
k(A+B) = [k aij] + [k bij]
7. [k aij] is a matrix, which is obtained by multiplying the matrix [aij]  by the scalar k. That is: [k aij] = k[aij]
• Similarly, [k bij] is a matrix, which is obtained by multiplying the matrix [bij]  by the scalar k. That is: [k bij] = k[bij]
8. So the expression in (6) can be modified as:
k(A+B) = k [aij] + k [bij]
9. But k [aij] is kA. Similarly, k [bij] is kB.
10. So the expression in (8) can be modified as:
k(A+B) = kA + kB

Part (ii)
• Proof can be written in 6 steps:
1. (k+l)A = (k+l)[aij]
This is because, we are multiplying each element of A by the scalar (k+l).
2. When we do the multiplication, we get the new matrix: [(k+l)aij].
• So the expression in (1) can be modified as:
(k+l)A = [(k+l)aij]
3. Consider the R.H.S of the expression in (2).
k and l are scalars. aij is a number.
• So the expression in (2) can be modified as:
(k+l)A = [(k aij) + (l aij)]
4. Consider the R.H.S of the expression in (3). It is the sum of two matrices.
• So the expression in (3) can be modified as:
(k+l)A = [k aij] + [l aij]
5. Consider the R.H.S of the expression in (4).
    ♦ The matrix [aij] is being multiplied by the scalar k.
    ♦ The matrix [aij] is being multiplied by the scalar l.
• So the expression in (4) can be modified as:
(k+l)A = k[aij] + l[aij]
6. The expression in (5) is same as:
(k+l)A = kA + lA


Now we will see a solved example:
Solved example 19.9
If A = $\left[\begin{array}{r}       
8    &{0}    \\
4    &{-2}    \\
3    &{6}    \\
\end{array}\right]       
$ and B = $\left[\begin{array}{r}       
2    &{-2}    \\
4    &{2}    \\
-5    &{1}    \\
\end{array}\right]       
$, then find the matrix X, such that 2A + 3X = 5B
Solution:
• The given expression is: 2A + 3X = 5B
• This expression can be modified as shown below:
$\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{2A + 3X}    & {~=~}    &{5B}    \\
{~\color{magenta}    2    }    &{\implies}    &{2A + 3X – 2A}    & {~=~}    &{5B – 2A}    \\
{~\color{magenta}    3    }    &{\implies}    &{2A – 2A + 3X}    & {~=~}    &{5B – 2A}    \\
{~\color{magenta}    4    }    &{\implies}    &{O + 3X}    & {~=~}    &{5B – 2A}    \\
{~\color{magenta}    5    }    &{\implies}    &{3X}    & {~=~}    &{5B – 2A}    \\
{~\color{magenta}    6    }    &{\implies}    &{X}    & {~=~}    &{\frac{1}{3}(5B – 2A)}    \\
\end{array}                           
$

◼ Remarks:
2. The matrix -2A is added on both sides.
3. Matrix addition is commutative. So the position of -2A in the L.H.S can be changed.
4. -2A is the additive inverse of 2A. Their sum will be O.


• Now we can input the values of A and B to find X. This is shown below:
$\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{X}    & {~=~}    &{\frac{1}{3} \left(5 \left[\begin{array}{r} 2&{-2}\\ 4&{2}\\ -5&{1}\\ \end{array}\right] - 2\left[\begin{array}{r} 8&{0}\\ 4&{-2}\\ 3&{6}\\ \end{array}\right]   \right)}    \\
{~\color{magenta}    2    }    &{{}}    &{{}}    & {~=~}    &{\frac{1}{3} \left(\left[\begin{array}{r} 10&{-10}\\ 20&{10}\\ -25&{5}\\ \end{array}\right] + \left[\begin{array}{r} -16&{0}\\ -8&{4}\\ -6&{-12}\\ \end{array}\right]   \right)}    \\
{~\color{magenta}    3    }    &{{}}    &{{}}    & {~=~}    &{\frac{1}{3} \left[\begin{array}{r} 10-16&{-10+0}\\ 20 – 8&{10+4}\\ -31&{5-12}\\ \end{array}\right]}    \\
{~\color{magenta}    4    }    &{{}}    &{{}}    & {~=~}    &{\frac{1}{3} \left[\begin{array}{r} -6&{-10}\\ 12&{14}\\ -31&{-7}\\ \end{array}\right]}    \\
{~\color{magenta}    5    }    &{{}}    &{{}}    & {~=~}    &{\left[\begin{array}{c} -2&{\frac{-10}{3}}\\ 4&{\frac{14}{3}}\\ \frac{-31}{3}&{\frac{-7}{3}}\\ \end{array}\right]}    \\
\end{array}$                           


In the next section, we will see a few more solved examples. 

Previous

Contents

Next

Copyright©2024 Higher secondary mathematics.blogspot.com

Thursday, February 15, 2024

19.3 - Addition of Matrices

In the previous section, we saw equality of matrices. In this section, we will see operations on matrices.

First we will see addition of matrices. It can be explained in 6 steps:
1. An industrialist has two factories. Factory A and Factory B. Both produces bicycles for boys and girls.
2. Bicycles are produced in three price tags: Platinum class, Gold class and Silver class.
◼ For example:
• Factory A produces:
   ♦ 35 Platinum class bicycles for boys and 40 Platinum class bicycles for girls.  
   ♦ 75 Gold class bicycles for boys and 80 Gold class bicycles for girls.  
   ♦ So on . . .
3. This data can be effectively represented using matrices A and B as shown in fig.19.14 below:

For adding two matrices together, we simply add the corresponding terms. Both matrices should be of the same order.
Fig.19.14

4. Now, if the industrialist wants to know the total production in each class, he can simply add the two matrices together. The resulting matrix C is shown in the same fig.19.14 above.
• The industrialist now know that, from the two factories,
   ♦ (35+15) = 50 platinum class is produced for boys.
   ♦ (40+25) = 65 platinum class is produced for girls.
   ♦ (75+35) = 110 Gold class is produced for boys.
   ♦ So on . . .
5. We see that, to find the sum, all we need to do, is to add the corresponding terms together.
• But it is important to make sure that, the matrices being added, are of the same order. If they are not of the same order, then the sum is not defined.
6. So we can write:
If A = [aij]m×n and B = [bij]m×n are two matrices of the same order m×n, then the sum of the two matrices A and B is defined as a matrix C = [cij]m×n, where cij = aij + bij for all possible values of i and j.
• Using symbols, this is written as:
A + B = [aij] + [bij] = [aij + bij] = C

Solved example 19.7
If A = $\left[\begin{array}{r}           
4    &{\sqrt5}    &{2}    \\
6    &{0}    &{-9}    \\
\end{array}\right]$ and B = $\left[\begin{array}{r}           
\sqrt3    &{7}    &{5}    \\
-2    &{\frac{2}{3}}    &{9}    \\
\end{array}\right]           
$, then find A+B
Solution:
• Both A and B are of the same order. So addition of A and B is defined. We get:
A+B = $\left[\begin{array}{r}           
4+\sqrt3    &{\sqrt5 + 7}    &{2+5}    \\
6 – 2    &{0 + \frac{2}{3}}    &{-9+9}    \\
\end{array}\right]~=~
\left[\begin{array}{c}           
4+\sqrt3    &{\sqrt5 + 7}    &{7}    \\
4    &{\frac{2}{3}}    &{0}    \\
\end{array}\right]$


Properties of Matrix addition

Matrix addition satisfy the following four properties:
(i) Commutative law
(ii) Associative law
(iii) Existence of additive identity
(iv) Existence of additive inverse

(i) Commutative law
• If A = [aij]m×n and B = [bij]m×n are two matrices of the same order m×n, then A+B = B+A
• Proof can be written in 3 steps:
1. A + B = [aij] + [bij] = [aij + bij]
We already saw this when we discussed matrix addition.
2. aij and bij are numbers. Addition of numbers is commutative. So (1) can be modified as:
A + B = [bij + aij]
3. [bij + aij] means that, every element of B is being added to the corresponding element of A.
• So it is the addition of B and A.
• Thus (2) can be modified as: A+B = B+A

(ii) Associative law
• If A = [aij]m×n , B = [bij]m×n and C = [cij]m×n are three matrices of the same order m×n, then (A+B)+C = A+(B+C)
• Proof can be written in 6 steps:
1. A + B = [aij] + [bij] = [aij + bij]
We already saw this when we discussed matrix addition.
2. So (A+B) + C = [aij + bij]+ [cij]
3. (2) can be modified by using the same procedure in (1). We get:
(A+B) + C = [aij + bij]+ [cij] = [(aij + bij) + cij]
4. aij , bij and cij are numbers. Addition of numbers is associative. So (3) can be modified as:
(A+B) + C = [(aij + bij) + cij] = [aij + (bij + cij)]
5. Consider the last term of the result in (4). It indicates that, two matrices are being added. The matrices being added are: A and (B+C).
• That is:
[aij + (bij + cij)] = [aij] + [(bij + cij)] = A + (B+C)
6. based on the results in (4) and (5), we get:
(A+B) + C = A + (B+C)

(iii) Existence of additive identity
• If A = [aij]m×n and O = [0ij]m×n are two matrices of the same order m×n, then A+O = O+A = A
• Proof can be written in 4 steps:
1. A + O = [aij] + [0ij] = [aij + 0ij]
We already saw this when we discussed matrix addition.
• But [aij + 0ij] = [aij] = A
• So we can write:
A + O = A
2. O + A = [0ij] + [aij] = [0ij + aij]
We already saw this when we discussed matrix addition.
• But [0ij + aij] = [aij] = A
• So we can write:
O + A = A
3. Based on (1) and (2), we can write: A+O = O+A = A
4. Whenever we add O to a matrix A, the sum will be the same matrix A. So O is called the additive identity for matrix addition.

(iv) Existence of additive inverse
• If A = [aij]m×n and A = [-aij]m×n are two matrices of the same order m×n, then A+(-A) = (-A)+A = O
(Here, -A is a matrix obtained by multiplying each element of A by -1)
• Proof can be written in 4 steps:
1. A + (-A) = [aij] + [-aij] = [aij + -aij] = [aij - aij]
We already saw this when we discussed matrix addition.
• But [aij - aij] = [0ij] = O
• So we can write:
A + (-A) = O
2. (-A) + A = [-aij] + [aij] = [-aij + aij]
We already saw this when we discussed matrix addition.
• But [-aij + aij] = [0ij] = O
• So we can write:
(-A) + A = O
3. Based on (1) and (2), we can write: A+(-A) = (-A)+A = O
4. Whenever we add -A to a matrix A, the sum will be the zero matrix O. So -A is called the additive inverse of A or negative of A.


In the next section, we will see multiplication of a matrix by a scalar. 

Previous

Contents

Next

Copyright©2024 Higher secondary mathematics.blogspot.com

 

Monday, February 12, 2024

19.2 - Equality of Matrices

In the previous section, we saw the different types of matrices. In this section, we will see equality of matrices.

Equality of matrices

This can be written in 3 steps:
1. Two matrices $A = \left[a_{ij} \right]$ and $B = \left[b_{ij} \right]$ are said to be equal, if two conditions are satisfied:
(i) A and B are of the same order.
(ii) Corresponding elements of A and B are equal. That is., aij = bij for all i and j.
• For example:
    ♦ $\begin{bmatrix}4 & 3\\8 & 1\end{bmatrix}$ and $\begin{bmatrix}4 & 3\\8 & 1\end{bmatrix}$ are equal matrices.

    ♦ $\begin{bmatrix}4 & 3\\8 & 1\end{bmatrix}$ and $\begin{bmatrix}3 & 4\\8 & 1\end{bmatrix}$ are not equal matrices.

2. If two matrices A and B are equal, then we can write it symbolically as: A = B.

3. If $\begin{bmatrix}a & b\\c & d\\u & v\end{bmatrix}$ = $\begin{bmatrix}3 & 2.5\\9 & \sqrt3\\5 & -1.2\end{bmatrix}$, then:

a = 3, b = 2.5, c = 9, d = √3, u = 5 and v = -1.2

Solved example 19.4
If $\left[\begin{array}{r}           
x+3    &{z+4}    &{2y-7}    \\
-6    &{a-1}    &{0}    \\
b-3    &{-21}    &{0}    \\
\end{array}\right]
=
\left[\begin{array}{r}           
0    &{6}    &{2y-2}    \\
-6    &{-3}    &{2c+2}    \\
2b+4    &{-21}    &{0}    \\
\end{array}\right]$, find the values of a, b, c, x, y and z.
Solution:
• Given that, the two matrices are equal. So their corresponding elements will be equal.
• Thus we get:
$\begin{array}{ll} {~\color{magenta}    1    }    &{~~~• }    &{x+3}    & {~=~}    &{0}    \\
{~\color{magenta}    2    }    &{\implies}    &{x}    & {~=~}    &{-3}    \\
{~\color{magenta}    3    }    &{~~~• }    &{z+4}    & {~=~}    &{6}    \\
{~\color{magenta}    4    }    &{\implies}    &{z}    & {~=~}    &{2}    \\
{~\color{magenta}    5    }    &{~~~• }    &{2y-7}    & {~=~}    &{3y-2}    \\
{~\color{magenta}    6    }    &{\implies}    &{y}    & {~=~}    &{-5}    \\
{~\color{magenta}    7    }    &{~~~• }    &{a-1}    & {~=~}    &{-3}    \\
{~\color{magenta}    8    }    &{\implies}    &{a}    & {~=~}    &{-2}    \\
{~\color{magenta}    9    }    &{~~~• }    &{0}    & {~=~}    &{2c+2}    \\
{~\color{magenta}    {10}    }    &{\implies}    &{c}    & {~=~}    &{-1}    \\
{~\color{magenta}    {11}    }    &{~~~• }    &{b-3}    & {~=~}    &{2b+4}    \\
{~\color{magenta}    {12}    }    &{\implies}    &{b}    & {~=~}    &{-7}    \\
\end{array}                           
$

Solved example 19.5
Find the values of a, b, c and d from the following equation:
$\left[\begin{array}{r}           
2a+b    &{a-2b}        \\
5c-d    &{4c+3d}        \\
\end{array}\right]
=
\left[\begin{array}{r}           
4    &{-3}        \\
11    &{24}      \\
\end{array}\right]$
Solution:
• Given that, the two matrices are equal. So their corresponding elements will be equal.
• Thus we get:
$\begin{array}{ll} {~\color{magenta}    1    }    &{~~~• }    &{2a+b}    & {~=~}    &{4}    \\
{~\color{magenta}    2    }    &{~~~• }    &{a-2b}    & {~=~}    &{-3}    \\
{~\color{magenta}    3    }    &{(2) \times 2}    &{2a-4b}    & {~=~}    &{-6}    \\
{~\color{magenta}    4    }    &{(1) – (3)}    &{5b}    & {~=~}    &{10}    \\
{~\color{magenta}    5    }    &{\implies}    &{b}    & {~=~}    &{2}    \\
{~\color{magenta}    6    }    &{\implies}    &{a}    & {~=~}    &{1}    \\
{~\color{magenta}    7    }    &{~~~• }    &{5c-d}    & {~=~}    &{11}    \\
{~\color{magenta}    8    }    &{~~~• }    &{4c+3d}    & {~=~}    &{24}    \\
{~\color{magenta}    9    }    &{(7) \times 3}    &{15c – 3d}    & {~=~}    &{33}    \\
{~\color{magenta}    {10}    }    &{(8) + (9)}    &{19c}    & {~=~}    &{57}    \\
{~\color{magenta}    {11}    }    &{\implies}    &{c}    & {~=~}    &{3}    \\
{~\color{magenta}    {12}    }    &{\implies}    &{d}    & {~=~}    &{4}    \\
\end{array}                           
$

Solved example 19.6
Write a scalar matrix of order 4. Assume constant k to be equal to 3.2
Solution:
• Any scalar matrix will be a square matrix. In our present case, the order is to be 4. So there will be 4 rows and 4 columns. Also, in a scalar matrix, all non-diagonal elements will be zero. Thus the required matrix is:

$\left[\begin{array}{c}                
3.2    &{0}    &{0}    &{0}    \\
0    &{3.2}    &{0}    &{0}    \\
0    &{0}    &{3.2}    &{0}    \\
0    &{0}    &{0}    &{3.2}    \\
\end{array}\right]$


The link below gives a few more solved examples:

Exercise 19.1


In the next section, we will see operations on matrices. 

Previous

Contents

Next

Copyright©2024 Higher secondary mathematics.blogspot.com

Sunday, February 11, 2024

19.1 - Types of Matrices

In the previous section, we saw some basic details about matrices. In this section, we will see some solved examples. Later in this section, we will see types of matrices.

Solved example 19.1
The following table gives the number of men and women workers in four factories I, II, III and IV.

Represent the above information in the form of a 4 × 2 matrix. Interpret the element in the third row and second column.
Solution:
1. A 4 × 2 matrix has four rows and two columns.
2. In the given problem, there are four factories. So each factory will have a unique row
3. There are two sets of workers. Men and women. So each set will have a unique column.
4. Thus we get the following matrix:
$\left[\begin{array}{r}       
{30}    &{25}    \\
{25}    &{31}    \\
{27}    &{26}    \\
{19}    &{21}    \\
\end{array}\right]$
5. Interpretation of element:
• Third row belongs to the third factory.
• Second column belongs to the women workers.
• So this element is the number of women workers in the third factory.

Solved example 19.2
If a matrix has 8 elements, what are the possible orders it can have?
Solution:
1. The general form of the order is m × n
2. The product of m and n = Number of elements in the matrix = 8
• Thus the possible values of m and n can be written as follows:
8 = (1 × 8) =  (2 × 4) =  (4 × 2) =  (8 × 1)
3. So the possible orders are:
(1 × 8) ⇒ 1 row and 8 columns.
(2 × 4) ⇒ 2 rows and 4 columns.
(4 × 2) ⇒ 4 rows and 2 columns.
(8 × 1) ⇒ 8 rows and 1 column.

Solved example 19.3
Construct a 3 × 2 matrix whose elements are given by $a_{ij} = \frac{1}{2}|i - 3j|$
Solution:
1. In the 3 × 2 matrix, there will be 3 rows and two columns.
2. Elements in the first row are:
   ♦ $a_{11} = \frac{1}{2}|1 - 3 × 1| = \frac{1}{2}| -2| = \frac{1}{2}× 2 = 1$

   ♦ $a_{12} = \frac{1}{2}|1 - 3 × 2| = \frac{1}{2}| -5| = \frac{1}{2}× 5 = \frac{5}{2}$

3. Elements in the second row are:
   ♦ $a_{21} = \frac{1}{2}|2 - 3 × 1| = \frac{1}{2}| -1| = \frac{1}{2}× 1 = \frac{1}{2}$

   ♦ $a_{22} = \frac{1}{2}|2 - 3 × 2| = \frac{1}{2}| -4| = \frac{1}{2}× 4 = 2$

4. Elements in the third row are:
   ♦ $a_{31} = \frac{1}{2}|3 - 3 × 1| = \frac{1}{2}| 0| = \frac{1}{2}× 0 = 0$

   ♦ $a_{32} = \frac{1}{2}|3 - 3 × 2| = \frac{1}{2}| -3| = \frac{1}{2}× 3 = \frac{3}{2}$

5. Thus, the required matrix is:
$\left[\begin{array}{r}       
{1}    &{\frac{5}{2}}    \\
{\frac{1}{2}}    &{2}    \\
{0}    &{\frac{3}{2}}    \\
\end{array}\right]       
$


 

Types of Matrices

• We have to learn about 7 types of matrices.
I. Column matrix
• This can be written in 3 steps:
1. If a matrix has only one column, then it is called a column matrix.
• The matrix A in fig.19.9 below is an example.

In a square matrix, there will be equal number of rows and columns.
Fig.19.9

2. The order of a column matrix will be in the form m × 1.
• So A is a 4 × 1 matrix.
3. The general form of a column matrix can be written as:
$A = \left[a_{ij} \right]_{m × 1}$

II. Row matrix
• This can be written in 3 steps:
1. If a matrix has only one row, then it is called a row matrix.
• The matrix B in fig.19.9 above is an example.
2. The order of a row matrix will be in the form 1 × n.
• So B is a 1 × 4 matrix.
3. The general form of a row matrix can be written as:
$B = \left[b_{ij} \right]_{1 × n}$

III. Square matrix
• This can be written in 3 steps:
1. If, in a matrix, the number of rows is equal to the number of columns, then it is called a square matrix.
• The matrix C in fig.19.9 above is an example.
2. The order of a row matrix will be in the form m × m.
• So C is a 4 × 4 matrix.
3. The general form of a square matrix can be written as:
$C = \left[c_{ij} \right]_{m × m}$
• We say that, C is a square matrix of order m.

IV. Diagonal matrix
• This can be written in 5 steps:
1. Consider any square matrix.
• We can think about a 'diagonal' from the top left element to the bottom right element.
2. All elements which lie along this diagonal, are called diagonal elements.
• All the remaining elements are called non-diagonal elements.
3. In a square matrix, if all the non-diagonal elements are zero, then it is called a diagonal matrix.
4. We can write the general form of a diagonal matrix as follows:
$D = \left[d_{ij} \right]_{m × m}$ is a diagonal matrix if dij = 0 when i ≠ j.
5. Fig.19.10 below shows some diagonal matrices.

Fig.19.10

• In the above fig.,
    ♦ A is a diagonal matrix of order 1.
    ♦ B is a diagonal matrix of order 2.
    ♦ C is a diagonal matrix of order 3.

V. Scalar matrix
• This can be written in 3 steps:
1. Consider any diagonal matrix.
• In that diagonal matrix, if all the diagonal elements are equal, then it is called a scalar matrix.
2. We can write the general form of a scalar matrix as follows:
• A square matrix $A = \left[a_{ij} \right]_{m × m}$ is a scalar matrix if two conditions are satisfied:
    ♦ aij = 0 when i ≠ j.
    ♦ aij = k when i = j, where k is a constant. 
3. Fig.19.11 below shows some scalar matrices.

Fig.19.11

• In the above fig.,
    ♦ A is a scalar matrix of order 1.
    ♦ B is a scalar matrix of order 2.
    ♦ C is a scalar matrix of order 3.

VI. Identity matrix
• This can be written in 5 steps:
1. Consider any scalar matrix.
• In that scalar matrix, if k = 1, then it is called an identity matrix.
2. We can write the general form of an identity matrix as follows:
• A square matrix $A = \left[a_{ij} \right]_{m × m}$ is an identity matrix if two conditions are satisfied:
    ♦ aij = 0 when i ≠ j.
    ♦ aij = 1 when i = j. 
3. Fig.19.12 below shows some identity matrices.

In an identity matrix, all diagonal elements are 1. Also, all non-diagonal elements are zero.
Fig.19.12

• In the above fig.,
    ♦ A is an identity matrix of order 1.
    ♦ B is an identity matrix of order 2.
    ♦ C is an identity matrix of order 3.
4. Denoting an identity matrix:
• If the order of an identity matrix is n, then we denote that matrix as In.
• So in the fig.19.12 above,
    ♦ A = I1.
    ♦ B = I2.
    ♦ C = I3.
• If the order is clear from the context, we simply denote it as I.
5. Note that:
• Every identity matrix, is a scalar matrix.
• But every scalar matrix need not be an identity matrix.

VII. Zero matrix
• This can be written in 3 steps:
1. Consider any matrix (it need not be a square matrix).
• In that matrix, if all the elements are zero, then it is called a zero matrix.
2. Fig.19.13 below shows some zero matrices.

In a zero matrix, all elements are zero.
Fig.19.13

3. Denoting an identity matrix:
• We denote a zero matrix by O. It's order will be clear from the context.


In the next section, we will see equality of matrices. 

Previous

Contents

Next

Copyright©2024 Higher secondary mathematics.blogspot.com