Loading [MathJax]/jax/output/HTML-CSS/jax.js

Saturday, May 13, 2023

Chapter 13.7 - Theorem 2

In the previous section, we saw examples on limits of polynomial functions and rational functions. In this section, we will see the second theorem.

Theorem 2

For any positive integer n,

limxa[xnanxa] = nan1

• The expression in this theorem is true even if n is any rational number and a is positive.

• We will see the proof for this theorem in higher classes. At present we will see some solved examples.

Solved example 13.3
(i) Evaluate limxa[x151x101]
(ii) Evaluate limx0[1+x1x] 

Solution:
Part (i):
We have:
limx1[x151x101] = limx1[x151x1 ÷ x101x1] = limx1[x151x1] ÷ limx1[x101x1] = [15×1151] ÷ [10×1101] = [15×114] ÷ [10×19] = [15×1] ÷ [10×1] = 1510 = 32

Part (ii):
1. Let u = x +1
2. We want the limit when x approaches zero.
• Based on (1), we can write:
When x approaches zero, u will approach 1
• Also based on (1), we get: x = u-1
3. So the required limit can be written in another form:
limu1[u1u1]
4. Now we can evaluate the limit:
limx0[1+x1x] = limu1[u1u1] = limu1[u121u1] = 12×1(121) = 12×1(12) = 12×1 = 12

Alternate method:
limx0[1+x1x] = limx0[1+x1x×1+x+11+x+1] = limx0[1+x1x(1+x+1)] = limx0[xx(1+x+1)] = limx0[1(1+x+1)] = [1(1+0+1)] = [1(1+1)] = 12

◼ Remarks:
• In the first line, we multiply both numerator and denominator by "√(1+x) + 1".
    ♦ So the numerator will be in the form (a+b)(a-b)
    ♦ We know that, (a+b)(a-b) = a2 - b2.


In the next section, we will see limits of trigonometric functions. 

Previous

Contents

Next

Copyright©2023 Higher secondary mathematics.blogspot.com

No comments:

Post a Comment