Processing math: 100%

Tuesday, March 11, 2025

23.10 - Solved Examples on Standard Integrals

In the previous two sections, we saw a total of ten basic integrals. We saw some solved examples also. In this section, we will see a few more solved examples.

Solved example 23.12
Find the following integrals:
(i) [x+22x2+6x+5]dx   (ii) [x+354x+x2]dx
Solution:
Part (i):
1. We have the following data:
a = 2, b = 6, c = 5, p = 1 and q = 2

2. Based on this data, we can calculate four items:

(i) u=x+b2a=x+32

(ii) ±k2=cab24a2=14

(iii) A=p2a=14

(iv) B=qAb=12

3. For this problem, we need to use formula IX:
[px+qax2+bx+c]dx = [A(2ax+b)+Bax2+bx+c]dx

4. So we need to calculate

[14(4x+6)+122x2+6x+5]dx = [14(4x+6)2x2+6x+5]dx + [122x2+6x+5]dx

• The R.H.S has two terms

5. Calculation of first term in (4):

(i) Let t=2x2+6x+5

(ii) Then dtdx=4x+6  (4x+6)dx=dt

(iii) [14t]dt=14[1t]dt=14log|t|=14log|2x2+6x+5|+C1

6. Calculation of second term in (4):

(i) Here we need to use formula VII:

[dxax2+bx+c] = 1a[duu2 ± k2]

[Recall that in 2(1), we put u = x + b/(2a). So du = dx]

(ii) So we want (12)(12)[du(x+32)2 + (12)2]

• Here we need to use formula III.

(iii) Let t=x+32

(iv) Then dtdx=1  dx=dt

(12)(12)[dtt2 + (12)2] = (12)(12)(11/2)tan1t1/2 + C2

 = 12tan12t+C2 = 12tan12(x+32)+ C2 = 12tan1(2x+3)+C2

7. Now we can write the R.H.S of (4):

14log|2x2+6x+5|+C1 + 12tan1(2x+3)+C2

 = 14log|2x2+6x+5|+12tan1(2x+3)+C

Part (ii): [x+354x+x2]dx

1. We have the following data:
a = -1, b = -4, c = 5, p = 1 and q = 3

2. Based on this data, we can calculate four items:

(i) u=x+b2a=x+2

(ii) ±k2=cab24a2=9

(iii) A=p2a=12

(iv) B=qAb=1

3. For this problem, we need to use formula X:
[px+qax2+bx+c]dx = [A(2ax+b)+Bax2+bx+c]dx

4. So we need to calculate

[12(2x4)+1x24x+5]dx = [12(2x4)x24x+5]dx + [1x24x+5]dx

• The R.H.S of (4) has two terms.

5. Calculation of first term in the R.H.S of (4):

(i) Let t=x24x+5

(ii) Then dtdx=2x4  (2x4)dx=dt

(iii) [12t]dt=12[1t]dt=12t1/21/2+C1

 = (1)t1/2+C1 = (1)x24x+5+C1

6. Calculation of second term in the R.H.S of (4):

(i) Here we need to use formula VIII:

[dxax2+bx+c] = 1a[duu2 ± k2]

[Recall that in 2(1), we put u = x + b/(2a). So du = dx]

(ii) So we want (11)[dx(x+2)2  (3)2]

 = [dx(1)[(x+2)2  (3)2]] = [dx32  (x+2)2]

• Here we need to use formula V.

(iii) Let t=x+2

(iv) Then dtdx=1  dx=dt

[dt32  t2] = sin1t3+C2

 = sin1x+23+C2

7. Now we can write the R.H.S of (4):

(1)x24x+5+C1 + sin1x+23+C2

 = x24x+5+sin1x+23+C

Solved example 23.13
Find the following integrals:
(i) [5x+3x2+4x+10]dx   (ii) [6x+7(x5)(x4)]dx

(iii) [x+24xx2]   (iv) [dx9x4x2]
Solution:
Part (i):
1. We have the following data:
a = 1, b = 4, c = 10, p = 5 and q = 3

2. Based on this data, we can calculate four items:

(i) u=x+b2a=x+2

(ii) ±k2=cab24a2=6

(iii) A=p2a=52

(iv) B=qAb=7

3. For this problem, we need to use formula X:
[px+qax2+bx+c]dx = [A(2ax+b)+Bax2+bx+c]dx

4. So we need to calculate

[52(2x+4)7x2+4x+10]dx = [52(2x+4)x2+4x+10]dx  [7x2+4x+10]dx

• The R.H.S has two terms

5. Calculation of first term in (4):

(i) Let t=x2+4x+10

(ii) Then dtdx=2x+4  (2x+4)dx=dt

(iii) [52t]dt=52[1t]dt=52t1/21/2+C1

 = (5)t1/2+C1 = 5x2+4x+10+C1

6. Calculation of second term in (4):

(i) Here we need to use formula VIII:

[dxax2+bx+c] = 1a[duu2 ± k2]

[Recall that in 2(1), we put u = x + b/(2a). So du = dx]

(ii) So we want (71)[dx(x+2)2 + (6)2]

 = 7[dx[(x+2)2 + (6)2]] 

• Here we need to use formula VI.

(iii) Let t=x+2

(iv) Then dtdx=1  dx=dt

7[dtt2 + (6)2] = 7log|t+t2+(6)2|+C2

 = 7log|x+2+(x+2)2+(6)2|+C2

 = 7log|x+2+x2+4x+4+6|+C2

 = 7log|x+2+x2+4x+10|+C2

7. Now we can write the R.H.S of (4):

5x2+4x+10C1 + 7log|x+2+x2+4x+10|+C2

 = 5x2+4x+107log|x+2+x2+4x+10|+C

Part (ii): [6x+7(x5)(x4)]dx

1. The given expression can be rearranged as:

[6x+7x29x+20]dx

• So we have the following data:
a = 1, b = -9, c = 20, p = 6 and q = 7

2. Based on this data, we can calculate four items:

(i) u=x+b2a=x92

(ii) ±k2=cab24a2=14

(iii) A=p2a=3

(iv) B=qAb=34

3. For this problem, we need to use formula X:
[px+qax2+bx+c]dx = [A(2ax+b)+Bax2+bx+c]dx

4. So we need to calculate

[3(2x9)+34x29x+20]dx = [3(2x9)x29x+20]dx + [34x29x+20]dx

• The R.H.S has two terms

5. Calculation of first term in (4):

(i) Let t=x29x+20

(ii) Then dtdx=2x9  (2x9)dx=dt

(iii) [3t]dt=3[1t]dt=3t1/21/2+C1

 = (6)t1/2+C1 = 6x29x+20+C1

6. Calculation of second term in (4):

(i) Here we need to use formula VIII:

[dxax2+bx+c] = 1a[duu2 ± k2]

[Recall that in 2(1), we put u = x + b/(2a). So du = dx]

(ii) So we want (341)[dx(x+2)2 + (6)2]

 = 7[dx[(x92)2  (12)2]]

• Here we need to use formula IV.

(iii) Let t=x92

(iv) Then dtdx=1  dx=dt

34[dtt2  (12)2] = 34log|t+t2(12)2|+C2

 = 34log|x92+(x92)2(12)2|+C2

 = 34log|x92+x29x+814  14|+C2

 = 34log|x92+x29x+804|+C2

 = 34log|x92+x29x+20|+C2

7. Now we can write the R.H.S of (4):

6x29x+20+C1 + 34log|x92+x29x+20|+C2

 = 6x29x+20+34log|x92+x29x+20|+C

Part (iii):
[x+24xx2]

1. We have the following data:
a = -1, b = 4, c = 0, p = 1 and q = 2

2. Based on this data, we can calculate four items:

(i) u=x+b2a=x2

(ii) ±k2=cab24a2=4

(iii) A=p2a=12

(iv) B=qAb=4

3. For this problem, we need to use formula X:
[px+qax2+bx+c]dx = [A(2ax+b)+Bax2+bx+c]dx

4. So we need to calculate

[12(2x+4)+4x2+4x]dx = [12(2x+4)x2+4x]dx + [4x2+4x]dx

• The R.H.S of (4) has two terms.

5. Calculation of first term in the R.H.S of (4):

(i) Let t=x2+4x

(ii) Then dtdx=2x+4  (2x+4)dx=dt

(iii) [12t]dt=12[1t]dt=12t1/21/2+C1

 = (1)t1/2+C1 = (1)x2+4x+C1

6. Calculation of second term in the R.H.S of (4):

(i) Here we need to use formula VIII:

[dxax2+bx+c] = 1a[duu2 ± k2]

[Recall that in 2(1), we put u = x + b/(2a). So du = dx]

(ii) So we want (11)[dx(x2)2  (2)2]

 = [dx(1)[(x2)2  (2)2]] = [dx22  (x2)2]

• Here we need to use formula V.

(iii) Let t=x2

(iv) Then dtdx=1  dx=dt

[dt22  t2] = sin1t2+C2

 = sin1x22+C2

7. Now we can write the R.H.S of (4):

(1)x2+4x+C1 + sin1x22+C2

 = x2+4x+sin1x22+C

Part (iv): [dx9x4x2]

1. We have the following data:
a = -4, b = 9 and c = 0

2. Based on this data, we can calculate two items:

(i) u=x+b2a=x98

(ii) ±k2=cab24a2=8164

3. For this problem, we need to use formula VIII:
[dxax2+bx+c] = 1a[duu2 ± k2]

[Recall that in 2(1), we put u = x + b/(2a). So du = dx]

(i) So we want

(14)[dx(x98)2  (98)2]

 = [dx(4)[(x98)2  (98)2]] = [dx(4)[(98)2  (x98)2]]

 = 12[dx(98)2  (x98)2]

(ii) Here we need to use formula V.

(iii) Let t=x98

(iv) Then dtdx=1  dx=dt

12[dt(98)2  t2] = 12sin1t9/8+C12

 = 12sin1x9898+C12 = 12sin1x9898+C12

 = 12sin18x99+C


In the next section, we will see a few more solved examples.

Previous

Contents

Next

Copyright©2025 Higher secondary mathematics.blogspot.com

No comments:

Post a Comment