In the previous two sections, we saw a total of ten basic integrals. We saw some solved examples also. In this section, we will see a few more solved examples.
Solved example 23.12
Find the following integrals:
(i) ∫[x+22x2+6x+5]dx (ii) ∫[x+3√5−4x+x2]dx
Solution:
Part (i):
1. We have the following data:
a = 2, b = 6, c = 5, p = 1 and q = 2
2. Based on this data, we can calculate four items:
(i) u=x+b2a=x+32
(ii) ±k2=ca−b24a2=14
(iii) A=p2a=14
(iv) B=q−Ab=12
3. For this problem, we need to use formula IX:
∫[px+qax2+bx+c]dx = ∫[A(2ax+b)+Bax2+bx+c]dx
4. So we need to calculate
∫[14(4x+6)+122x2+6x+5]dx = ∫[14(4x+6)2x2+6x+5]dx + ∫[122x2+6x+5]dx
• The R.H.S has two terms
5. Calculation of first term in (4):
(i) Let t=2x2+6x+5
(ii) Then dtdx=4x+6 ⇒ (4x+6)dx=dt
(iii) ∫[14t]dt=14∫[1t]dt=14log|t|=14log|2x2+6x+5|+C1
6. Calculation of second term in (4):
(i) Here we need to use formula VII:
∫[dxax2+bx+c] = 1a∫[duu2 ± k2]
[Recall that in 2(1), we put u = x + b/(2a). So du = dx]
(ii) So we want (12)(12)∫[du(x+32)2 + (12)2]
• Here we need to use formula III.
(iii) Let t=x+32
(iv) Then dtdx=1 ⇒ dx=dt
(12)(12)∫[dtt2 + (12)2] = (12)(12)(11/2)tan−1t1/2 + C2
= 12tan−12t+C2 = 12tan−12(x+32)+ C2 = 12tan−1(2x+3)+C2
7. Now we can write the R.H.S of (4):
14log|2x2+6x+5|+C1 + 12tan−1(2x+3)+C2
= 14log|2x2+6x+5|+12tan−1(2x+3)+C
Part (ii): ∫[x+3√5−4x+x2]dx
1. We have the following data:
a = -1, b = -4, c = 5, p = 1 and q = 3
2. Based on this data, we can calculate four items:
(i) u=x+b2a=x+2
(ii) ±k2=ca−b24a2=−9
(iii) A=p2a=−12
(iv) B=q−Ab=1
3. For this problem, we need to use formula X:
∫[px+q√ax2+bx+c]dx = ∫[A(2ax+b)+B√ax2+bx+c]dx
4. So we need to calculate
∫[−12(2x−4)+1√−x2−4x+5]dx = ∫[−12(2x−4)√−x2−4x+5]dx + ∫[1√−x2−4x+5]dx
• The R.H.S of (4) has two terms.
5. Calculation of first term in the R.H.S of (4):
(i) Let t=−x2−4x+5
(ii) Then dtdx=−2x−4 ⇒ (−2x−4)dx=dt
(iii) ∫[−12√t]dt=−12∫[1√t]dt=−12t1/21/2+C1
= (−1)t1/2+C1 = (−1)√−x2−4x+5+C1
6. Calculation of second term in the R.H.S of (4):
(i) Here we need to use formula VIII:
∫[dx√ax2+bx+c] = 1√a∫[du√u2 ± k2]
[Recall that in 2(1), we put u = x + b/(2a). So du = dx]
(ii) So we want (1√−1)∫[dx√(x+2)2 − (3)2]
= ∫[dx√(−1)[(x+2)2 − (3)2]] = ∫[dx√32 − (x+2)2]
• Here we need to use formula V.
(iii) Let t=x+2
(iv) Then dtdx=1 ⇒ dx=dt
∫[dt√32 − t2] = sin−1t3+C2
= sin−1x+23+C2
7. Now we can write the R.H.S of (4):
(−1)√−x2−4x+5+C1 + sin−1x+23+C2
= −√−x2−4x+5+sin−1x+23+C
Solved example 23.13
Find the following integrals:
(i) ∫[5x+3√x2+4x+10]dx (ii) ∫[6x+7√(x−5)(x−4)]dx
(iii) ∫[x+2√4x−x2] (iv) ∫[dx√9x−4x2]
Solution:
Part (i):
1. We have the following data:
a = 1, b = 4, c = 10, p = 5 and q = 3
2. Based on this data, we can calculate four items:
(i) u=x+b2a=x+2
(ii) ±k2=ca−b24a2=6
(iii) A=p2a=52
(iv) B=q−Ab=−7
3. For this problem, we need to use formula X:
∫[px+q√ax2+bx+c]dx = ∫[A(2ax+b)+B√ax2+bx+c]dx
4. So we need to calculate
∫[52(2x+4)−7√x2+4x+10]dx = ∫[52(2x+4)√x2+4x+10]dx − ∫[7√x2+4x+10]dx
• The R.H.S has two terms
5. Calculation of first term in (4):
(i) Let t=x2+4x+10
(ii) Then dtdx=2x+4 ⇒ (2x+4)dx=dt
(iii) ∫[52√t]dt=52∫[1√t]dt=52t1/21/2+C1
= (5)t1/2+C1 = 5√x2+4x+10+C1
6. Calculation of second term in (4):
(i) Here we need to use formula VIII:
∫[dx√ax2+bx+c] = 1√a∫[du√u2 ± k2]
[Recall that in 2(1), we put u = x + b/(2a). So du = dx]
(ii) So we want (7√1)∫[dx√(x+2)2 + (√6)2]
= 7∫[dx√[(x+2)2 + (√6)2]]
• Here we need to use formula VI.
(iii) Let t=x+2
(iv) Then dtdx=1 ⇒ dx=dt
7∫[dt√t2 + (√6)2] = 7log|t+√t2+(√6)2|+C2
= 7log|x+2+√(x+2)2+(√6)2|+C2
= 7log|x+2+√x2+4x+4+6|+C2
= 7log|x+2+√x2+4x+10|+C2
7. Now we can write the R.H.S of (4):
5√x2+4x+10−C1 + 7log|x+2+√x2+4x+10|+C2
= 5√x2+4x+10−7log|x+2+√x2+4x+10|+C
Part (ii): ∫[6x+7√(x−5)(x−4)]dx
1. The given expression can be rearranged as:
∫[6x+7x2−9x+20]dx
• So we have the following data:
a = 1, b = -9, c = 20, p = 6 and q = 7
2. Based on this data, we can calculate four items:
(i) u=x+b2a=x−92
(ii) ±k2=ca−b24a2=−14
(iii) A=p2a=3
(iv) B=q−Ab=34
3. For this problem, we need to use formula X:
∫[px+q√ax2+bx+c]dx = ∫[A(2ax+b)+B√ax2+bx+c]dx
4. So we need to calculate
∫[3(2x−9)+34√x2−9x+20]dx = ∫[3(2x−9)√x2−9x+20]dx + ∫[34√x2−9x+20]dx
• The R.H.S has two terms
5. Calculation of first term in (4):
(i) Let t=x2−9x+20
(ii) Then dtdx=2x−9 ⇒ (2x−9)dx=dt
(iii) ∫[3√t]dt=3∫[1√t]dt=3t1/21/2+C1
= (6)t1/2+C1 = 6√x2−9x+20+C1
6. Calculation of second term in (4):
(i) Here we need to use formula VIII:
∫[dx√ax2+bx+c] = 1√a∫[du√u2 ± k2]
[Recall that in 2(1), we put u = x + b/(2a). So du = dx]
(ii) So we want (34√1)∫[dx√(x+2)2 + (√6)2]
= 7∫[dx√[(x−92)2 − (12)2]]
• Here we need to use formula IV.
(iii) Let t=x−92
(iv) Then dtdx=1 ⇒ dx=dt
34∫[dt√t2 − (12)2] = 34log|t+√t2−(12)2|+C2
= 34log|x−92+√(x−92)2−(12)2|+C2
= 34log|x−92+√x2−9x+814 − 14|+C2
= 34log|x−92+√x2−9x+804|+C2
= 34log|x−92+√x2−9x+20|+C2
7. Now we can write the R.H.S of (4):
6√x2−9x+20+C1 + 34log|x−92+√x2−9x+20|+C2
= 6√x2−9x+20+34log|x−92+√x2−9x+20|+C
Part (iii):
∫[x+2√4x−x2]
1. We have the following data:
a = -1, b = 4, c = 0, p = 1 and q = 2
2. Based on this data, we can calculate four items:
(i) u=x+b2a=x−2
(ii) ±k2=ca−b24a2=−4
(iii) A=p2a=−12
(iv) B=q−Ab=4
3. For this problem, we need to use formula X:
∫[px+q√ax2+bx+c]dx = ∫[A(2ax+b)+B√ax2+bx+c]dx
4. So we need to calculate
∫[−12(−2x+4)+4√−x2+4x]dx = ∫[−12(−2x+4)√−x2+4x]dx + ∫[4√−x2+4x]dx
• The R.H.S of (4) has two terms.
5. Calculation of first term in the R.H.S of (4):
(i) Let t=−x2+4x
(ii) Then dtdx=−2x+4 ⇒ (−2x+4)dx=dt
(iii) ∫[−12√t]dt=−12∫[1√t]dt=−12t1/21/2+C1
= (−1)t1/2+C1 = (−1)√−x2+4x+C1
6. Calculation of second term in the R.H.S of (4):
(i) Here we need to use formula VIII:
∫[dx√ax2+bx+c] = 1√a∫[du√u2 ± k2]
[Recall that in 2(1), we put u = x + b/(2a). So du = dx]
(ii) So we want (1√−1)∫[dx√(x−2)2 − (2)2]
= ∫[dx√(−1)[(x−2)2 − (2)2]] = ∫[dx√22 − (x−2)2]
• Here we need to use formula V.
(iii) Let t=x−2
(iv) Then dtdx=1 ⇒ dx=dt
∫[dt√22 − t2] = sin−1t2+C2
= sin−1x−22+C2
7. Now we can write the R.H.S of (4):
(−1)√−x2+4x+C1 + sin−1x−22+C2
= −√−x2+4x+sin−1x−22+C
Part (iv): ∫[dx√9x−4x2]
1. We have the following data:
a = -4, b = 9 and c = 0
2. Based on this data, we can calculate two items:
(i) u=x+b2a=x−98
(ii) ±k2=ca−b24a2=−8164
3. For this problem, we need to use formula VIII:
∫[dx√ax2+bx+c] = 1√a∫[du√u2 ± k2]
[Recall that in 2(1), we put u = x + b/(2a). So du = dx]
(i) So we want
(1√−4)∫[dx√(x−98)2 − (98)2]
= ∫[dx√(−4)[(x−98)2 − (98)2]] = ∫[dx√(4)[(98)2 − (x−98)2]]
= 12∫[dx√(98)2 − (x−98)2]
(ii) Here we need to use formula V.
(iii) Let t=x−98
(iv) Then dtdx=1 ⇒ dx=dt
12∫[dt√(98)2 − t2] = 12sin−1t9/8+C12
= 12sin−1x−9898+C12 = 12sin−1x−9898+C12
= 12sin−18x−99+C
In the next section, we will see a few more solved examples.
Previous
Contents
Next
Copyright©2025 Higher secondary mathematics.blogspot.com
No comments:
Post a Comment