In the previous section, we saw some solved examples related to the standard integrals. In this section, we will see a few more solved examples.
Solved example 23.14
Find the following integrals:
(i) ∫[dx√x2+2x+2] (ii) ∫[dx√(x−m)(x−n)]
(iii) ∫[dx√(x−1)(x−2)] (iv) ∫[dx√8+3x−x2]
Solution:
Part (i):
1. We have the following data:
a = 1, b = 2 and c = 2
2. Based on this data, we can calculate two items:
(i) u=x+b2a=x+1
(ii) ±k2=ca−b24a2=1
3. For this problem, we need to use formula VIII:
∫[dx√ax2+bx+c] = 1√a∫[du√u2 ± k2]
[Recall that in 2(1), we put u = x + b/(2a). So du = dx]
(i) So we want
(1√1)∫[dx√(x+1)2 + (1)2]
= ∫[dx√(x+1)2 + (1)2]
(ii) Here we need to use formula VI.
(iii) Let t=x+1
(iv) Then dtdx=1 ⇒ dx=dt
∫[dt√(t)2 + (1)2] = log|t+√t2+12|+C
= log|x+1+√(x+1)2+1|+C
= log|x+1+√x2+2x+2|+C
Part (ii): ∫[1√(x−m)(x−n)]dx
1. Let us rearrange the given expression:
1√(x−m)(x−n) = 1√x2−mx−nx+mn = 1√x2−(m+n)x+mn
So we have the following data:
a = 1, b = -(m+n) and c = mn
2. Based on this data, we can calculate two items:
(i) u=x+b2a=x−m+n2
(ii) ±k2=ca−b24a2=mn − (m+n2)2
=mn − (m2+2mn+n24)=4mn−m2−2mn−n24
=2mn−m2−n24=−(m−n)24
3. For this problem, we need to use formula VIII:
∫[dx√ax2+bx+c] = 1√a∫[du√u2 ± k2]
[Recall that in 2(1), we put u = x + b/(2a). So du = dx]
(i) So we want
(1√1)∫[dx√(x−m+n2)2 − (m−n2)2]
= ∫[dx√(x−m+n2)2 − (m−n2)2]
(ii) Here we need to use formula IV.
(iii) Let t=x−m+n2
(iv) Then dtdx=1 ⇒ dx=dt
∫[dt√(t)2 + (m−n2)2] = log|t+√t2−(m−n2)2|+C
= log|x−m+n2+√(x−m+n2)2−(m−n2)2|+C
= log|x−m+n2+√[2x−(m+n)]24−[m−n]24|+C
= log|x−m+n2+12√[2x−(m+n)]2 − [m−n]2|+C
= log|x−m+n2+12√4x2−4x(m+n)+(m+n)2−(m−n)2|+C
= log|x−m+n2+12√4x2−4xm−4xn+m2+2mn+n2−[m2−2mn+n2]|+C
= log|x−m+n2+12√4x2−4xm−4xn+m2+2mn+n2−m2+2mn−n2]|+C
= log|x−m+n2+12√4x2−4xm−4xn+4mn]|+C
= log|x−m+n2+√x2−xm−xn+mn]|+C
= log|x−m+n2+√x2−x(m+n)+mn|+C
= log|x−m+n2+√(x−m)(x−n)|+C
Part (iii): ∫[dx√(x−1)(x−2)]
Easy method:
•
From the previous solved example, we have the formula:
∫[dx√(x−m)(x−n)] = log|x−m+n2+√(x−m)(x−n)|+C
•
So we get:
∫[dx√(x−1)(x−2)] = log|x−1+22+√(x−1)(x−2)|+C
= log|x−32+√x2−3x+2|+C
• The reader may try the usual method also.
Part (iv): ∫[dx√8+3x−x2]
1. We have the following data:
a = -1, b = 3 and c = 8
2. Based on this data, we can calculate two items:
(i) u=x+b2a=x−32
(ii) ±k2=ca−b24a2=−414
3. For this problem, we need to use formula VIII:
∫[dx√ax2+bx+c] = 1√a∫[du√u2 ± k2]
[Recall that in 2(1), we put u = x + b/(2a). So du = dx]
(i) So we want
(1√−1)∫[dx√(x−32)2 − (414)]
= ∫[dx√(−1)[(x−32)2 − (√412)2]] = ∫[dx√[(√412)2 − (x−32)2]]
(ii) Here we need to use formula V.
(iii) Let t=x−32
(iv) Then dtdx=1 ⇒ dx=dt
∫[dt√(√412)2 − t2] = sin−1t√412+C
= sin−1x−32√412+C = sin−12x−3√41+C
Solved example 23.15
Find the following integrals:
(i) ∫[x+3x2−2x−5]dx (ii) ∫[5x−21+2x+3x2]dx
(iii) ∫[dx9x2+6x+5] (iv) ∫[dxx2+2x+2]
Solution:
Part (i):
1. We have the following data:
a = 1, b = -2, c = -5, p = 1 and q = 3
2. Based on this data, we can calculate four items:
(i) u=x+b2a=x−1
(ii) ±k2=ca−b24a2=−6
(iii) A=p2a=12
(iv) B=q−Ab=4
3. For this problem, we need to use formula X:
∫[px+qax2+bx+c]dx = ∫[A(2ax+b)+Bax2+bx+c]dx
4. So we need to calculate
∫[12(2x−2)+4x2−2x−5]dx = ∫[12(2x−2)x2−2x−5]dx + ∫[4x2−2x−5]dx
• The R.H.S has two terms
(i) Let t=x2−2x−5
(ii) Then dtdx=2x−2 ⇒ (2x−2)dx=dt
(iii) ∫[12t]dt=12∫[1t]dt=12log|t|+C1
= 12log|x2−2x−5|+C1
6. Calculation of second term in (4):
(i) Here we need to use formula VII:
∫[dxax2+bx+c] = 1a∫[duu2 ± k2]
[Recall that in 2(1), we put u = x + b/(2a). So du = dx]
(ii) So we want (41)∫[dx(x−1)2 − (√6)2]
= 4∫[dx(x−1)2 − (√6)2]
• Here we need to use formula I.
(iii) Let t=x−2
(iv) Then dtdx=1 ⇒ dx=dt
4∫[dtt2 − (√6)2] = 42(√6)log|x−1−√6x−1+√6|+C2
= 2√6log|x−1−√6x−1+√6|+C2
7. Now we can write the R.H.S of (4):
12log|x2−2x−5|+C1 + 2√6log|x−1−√6x−1+√6|+C2
12log|x2−2x−5| + 2√6log|x−1−√6x−1+√6|+C
Part (ii): ∫[5x−21+2x+3x2]dx
1. We have the following data:
a = 3, b = 2, c = 1, p = 5 and q = -2
2. Based on this data, we can calculate four items:
(i) u=x+b2a=x+13
(ii) ±k2=ca−b24a2=29
(iii) A=p2a=56
(iv) B=q−Ab=−113
3. For this problem, we need to use formula IX:
∫[px+qax2+bx+c]dx = ∫[A(2ax+b)+Bax2+bx+c]dx
4. So we need to calculate
∫[56(6x+2)−1133x2+2x+1]dx = ∫[56(6x+2)3x2+2x+1]dx − ∫[1133x2+2x+1]dx
• The R.H.S has two terms
5. Calculation of first term in (4):
(i) Let t=3x2+2x+1
(ii) Then dtdx=6x+2 ⇒ (6x+2)dx=dt
(iii) ∫[56t]dt=56∫[1t]dt=56log|t|+C1
= 56log|3x2+2x+1|+5C16
6. Calculation of second term in (4):
(i) Here we need to use formula VII:
∫[dxax2+bx+c] = 1a∫[duu2 ± k2]
[Recall that in 2(1), we put u = x + b/(2a). So du = dx]
(ii) So we want (113)(13)∫[dx(x+13)2 + (√23)2]
• Here we need to use formula III.
(iii) Let t=x+13
(iv) Then dtdx=1 ⇒ dx=dt
119∫[dtt2 + (√23)2] = 119[(1√23)tan−1(t√23)+C2]
= 119[(3√2)tan−1(3t√2)+C2]
= (113√2)tan−1(3(x+13)√2)+11C29
= (113√2)tan−1(3x+3√2)+11C29
7. Now we can write the R.H.S of (4):
56log|3x2+2x+1|+5C16 − (113√2)tan−1(3x+3√2)+11C29
56log|3x2+2x+1| − (113√2)tan−1(3x+3√2)+C
Part (iii):
∫[dx9x2+6x+5]
1. We have the following data:
a = 9, b = 6 and c = 5
2. Based on this data, we can calculate two items:
(i) u=x+b2a=x+13
(ii) ±k2=ca−b24a2=49
3. For this problem, we need to use formula VII:
∫[dxax2+bx+c] = 1a∫[duu2 ± k2]
[Recall that in 2(1), we put u = x + b/(2a). So du = dx]
4. So we need to calculate
19∫[du(x+13)2 + (23)2]
• Here we need to use formula III.
(iii) Let t=x+13
(iv) Then dtdx=1 ⇒ dx=dt
19∫[dtt2 + (23)2] = 19[(123)tan−1(t23)+C1]
= 19[(32)tan−1(3t2)+C1]
= (16)tan−1(3(x+13)2)+C19
= (16)tan−1(3x+12)+C
Part (iv): ∫[dx√x2+2x+2]
1. We have the following data:
a = 1, b = 2 and c = 2
2. Based on this data, we can calculate two items:
(i) u=x+b2a=x+1
(ii) ±k2=ca−b24a2=1
3. For this problem, we need to use formula VII:
∫[dxax2+bx+c] = 1a∫[duu2 ± k2]
[Recall that in 2(1), we put u = x + b/(2a). So du = dx]
4. So we need to calculate
11∫[du(x+1)2 + (1)2]
• Here we need to use formula III.
(iii) Let t=x+1
(iv) Then dtdx=1 ⇒ dx=dt
∫[dtt2 + (1)2] = 11[(11)tan−1(t1)+C]
= tan−1(t)+C
= tan−1(x+1)+C
The link below gives a few more solved examples:
Exercise 23.4
In the next section, we will see some more solved examples.
Previous
Contents
Next
Copyright©2025 Higher secondary mathematics.blogspot.com
No comments:
Post a Comment