Processing math: 100%

Friday, March 14, 2025

23.11 - More Solved Examples on Standard Integrals

In the previous section, we saw some solved examples related to the standard integrals. In this section, we will see a few more solved examples.

Solved example 23.14
Find the following integrals:
(i) [dxx2+2x+2]   (ii) [dx(xm)(xn)]

(iii) [dx(x1)(x2)]   (iv) [dx8+3xx2]
Solution:
Part (i):
1. We have the following data:
a = 1, b = 2 and c = 2

2. Based on this data, we can calculate two items:

(i) u=x+b2a=x+1

(ii) ±k2=cab24a2=1

3. For this problem, we need to use formula VIII:
[dxax2+bx+c] = 1a[duu2 ± k2]

[Recall that in 2(1), we put u = x + b/(2a). So du = dx]

(i) So we want

(11)[dx(x+1)2 + (1)2]

 = [dx(x+1)2 + (1)2]

(ii) Here we need to use formula VI.

(iii) Let t=x+1

(iv) Then dtdx=1  dx=dt

[dt(t)2 + (1)2] = log|t+t2+12|+C

 = log|x+1+(x+1)2+1|+C

 = log|x+1+x2+2x+2|+C

Part (ii): [1(xm)(xn)]dx

1. Let us rearrange the given expression:

1(xm)(xn) = 1x2mxnx+mn = 1x2(m+n)x+mn

So we have the following data:
a = 1, b = -(m+n) and c = mn

2. Based on this data, we can calculate two items:

(i) u=x+b2a=xm+n2

(ii) ±k2=cab24a2=mn  (m+n2)2

=mn  (m2+2mn+n24)=4mnm22mnn24

=2mnm2n24=(mn)24

3. For this problem, we need to use formula VIII:
[dxax2+bx+c] = 1a[duu2 ± k2]

[Recall that in 2(1), we put u = x + b/(2a). So du = dx]

(i) So we want

(11)[dx(xm+n2)2  (mn2)2]
 

 = [dx(xm+n2)2  (mn2)2]

(ii) Here we need to use formula IV.

(iii) Let t=xm+n2

(iv) Then dtdx=1  dx=dt

[dt(t)2 + (mn2)2] = log|t+t2(mn2)2|+C

 = log|xm+n2+(xm+n2)2(mn2)2|+C

 = log|xm+n2+[2x(m+n)]24[mn]24|+C

 = log|xm+n2+12[2x(m+n)]2  [mn]2|+C

 = log|xm+n2+124x24x(m+n)+(m+n)2(mn)2|+C

 = log|xm+n2+124x24xm4xn+m2+2mn+n2[m22mn+n2]|+C

 = log|xm+n2+124x24xm4xn+m2+2mn+n2m2+2mnn2]|+C

 = log|xm+n2+124x24xm4xn+4mn]|+C

 = log|xm+n2+x2xmxn+mn]|+C

 = log|xm+n2+x2x(m+n)+mn|+C

 = log|xm+n2+(xm)(xn)|+C

Part (iii): [dx(x1)(x2)]

Easy method:
• From the previous solved example, we have the formula:
[dx(xm)(xn)] = log|xm+n2+(xm)(xn)|+C

• So we get:
[dx(x1)(x2)] = log|x1+22+(x1)(x2)|+C 

 = log|x32+x23x+2|+C

• The reader may try the usual method also.

Part (iv): [dx8+3xx2]

1. We have the following data:
a = -1, b = 3 and c = 8

2. Based on this data, we can calculate two items:

(i) u=x+b2a=x32

(ii) ±k2=cab24a2=414

3. For this problem, we need to use formula VIII:
[dxax2+bx+c] = 1a[duu2 ± k2]

[Recall that in 2(1), we put u = x + b/(2a). So du = dx]

(i) So we want

(11)[dx(x32)2  (414)]

 = [dx(1)[(x32)2  (412)2]] = [dx[(412)2  (x32)2]]

(ii) Here we need to use formula V.

(iii) Let t=x32

(iv) Then dtdx=1  dx=dt

[dt(412)2  t2] = sin1t412+C

 = sin1x32412+C = sin12x341+C

Solved example 23.15
Find the following integrals:
(i) [x+3x22x5]dx   (ii) [5x21+2x+3x2]dx

(iii) [dx9x2+6x+5]   (iv) [dxx2+2x+2]
Solution:
Part (i):
1. We have the following data:
a = 1, b = -2, c = -5, p = 1 and q = 3

2. Based on this data, we can calculate four items:

(i) u=x+b2a=x1

(ii) ±k2=cab24a2=6

(iii) A=p2a=12

(iv) B=qAb=4

3. For this problem, we need to use formula X:
[px+qax2+bx+c]dx = [A(2ax+b)+Bax2+bx+c]dx

4. So we need to calculate

[12(2x2)+4x22x5]dx = [12(2x2)x22x5]dx + [4x22x5]dx

• The R.H.S has two terms

5. Calculation of first term in (4):

(i) Let t=x22x5

(ii) Then dtdx=2x2  (2x2)dx=dt

(iii) [12t]dt=12[1t]dt=12log|t|+C1

 = 12log|x22x5|+C1

6. Calculation of second term in (4):

(i) Here we need to use formula VII:

[dxax2+bx+c] = 1a[duu2 ± k2]

[Recall that in 2(1), we put u = x + b/(2a). So du = dx]

(ii) So we want (41)[dx(x1)2  (6)2]

 = 4[dx(x1)2  (6)2]

• Here we need to use formula I.

(iii) Let t=x2

(iv) Then dtdx=1  dx=dt

4[dtt2  (6)2] = 42(6)log|x16x1+6|+C2

 = 26log|x16x1+6|+C2

7. Now we can write the R.H.S of (4):

12log|x22x5|+C1 + 26log|x16x1+6|+C2

12log|x22x5| + 26log|x16x1+6|+C

Part (ii): [5x21+2x+3x2]dx

1. We have the following data:
a = 3, b = 2, c = 1, p = 5 and q = -2

2. Based on this data, we can calculate four items:

(i) u=x+b2a=x+13

(ii) ±k2=cab24a2=29

(iii) A=p2a=56

(iv) B=qAb=113

3. For this problem, we need to use formula IX:
[px+qax2+bx+c]dx = [A(2ax+b)+Bax2+bx+c]dx

4. So we need to calculate

[56(6x+2)1133x2+2x+1]dx = [56(6x+2)3x2+2x+1]dx  [1133x2+2x+1]dx

• The R.H.S has two terms

5. Calculation of first term in (4):

(i) Let t=3x2+2x+1

(ii) Then dtdx=6x+2  (6x+2)dx=dt

(iii) [56t]dt=56[1t]dt=56log|t|+C1

 = 56log|3x2+2x+1|+5C16

6. Calculation of second term in (4):

(i) Here we need to use formula VII:

[dxax2+bx+c] = 1a[duu2 ± k2]

[Recall that in 2(1), we put u = x + b/(2a). So du = dx]

(ii) So we want (113)(13)[dx(x+13)2 + (23)2]

• Here we need to use formula III.

(iii) Let t=x+13

(iv) Then dtdx=1  dx=dt

119[dtt2 + (23)2] = 119[(123)tan1(t23)+C2]

 = 119[(32)tan1(3t2)+C2]

 = (1132)tan1(3(x+13)2)+11C29

 = (1132)tan1(3x+32)+11C29

7. Now we can write the R.H.S of (4):

56log|3x2+2x+1|+5C16  (1132)tan1(3x+32)+11C29

56log|3x2+2x+1|  (1132)tan1(3x+32)+C

Part (iii):
[dx9x2+6x+5]

1. We have the following data:
a = 9, b = 6 and c = 5

2. Based on this data, we can calculate two items:

(i) u=x+b2a=x+13

(ii) ±k2=cab24a2=49

3. For this problem, we need to use formula VII:

[dxax2+bx+c] = 1a[duu2 ± k2]

[Recall that in 2(1), we put u = x + b/(2a). So du = dx]

4. So we need to calculate

19[du(x+13)2 + (23)2]

• Here we need to use formula III.

(iii) Let t=x+13

(iv) Then dtdx=1  dx=dt

19[dtt2 + (23)2] = 19[(123)tan1(t23)+C1]

 = 19[(32)tan1(3t2)+C1]

 = (16)tan1(3(x+13)2)+C19

 = (16)tan1(3x+12)+C

Part (iv): [dxx2+2x+2]

1. We have the following data:
a = 1, b = 2 and c = 2

2. Based on this data, we can calculate two items:

(i) u=x+b2a=x+1

(ii) ±k2=cab24a2=1

3. For this problem, we need to use formula VII:

[dxax2+bx+c] = 1a[duu2 ± k2]

[Recall that in 2(1), we put u = x + b/(2a). So du = dx]

4. So we need to calculate

11[du(x+1)2 + (1)2]

• Here we need to use formula III.

(iii) Let t=x+1

(iv) Then dtdx=1  dx=dt

[dtt2 + (1)2] = 11[(11)tan1(t1)+C]

 = tan1(t)+C

 = tan1(x+1)+C


The link below gives a few more solved examples:

Exercise 23.4


In the next section, we will see some more solved examples.

Previous

Contents

Next

Copyright©2025 Higher secondary mathematics.blogspot.com

No comments:

Post a Comment