Wednesday, March 5, 2025

23.8 - Integrals of Some Particular Functions

In the previous section, we completed a discussion on the application of trigonometric identities in the process of integration. We saw some solved examples also. In this section, we will see the integrals of some particular functions.

First we will see six basic results. They can be used as formulas for solving complex problems.

Formula I
[dxx2m2]=12mlog|xmx+m|+C

Proof can be written in 3 steps:

1. We can rearrange the L.H.S as shown below:

 11x2m2 = 1(x+m)(xm) 2 = (x+m)(xm)2m(x+m)(xm) 3 = (x+m)2m(x+m)(xm)  (xm)2m(x+m)(xm) 4 = 12m(xm)  12m(x+m) 5 = 12m[1xm  1x+m]

2. So we want:
[dxx2m2]dx=[12m[1xm  1x+m]]dx

= [12m[1xm]]dx[12m[1x+m]]dx

3. This integration gives:

12mlog|xm|  12mlog|x+m|+C = 12mlog|xmx+m|+C

Formula II
[dxm2x2]=12mlog|m+xmx|+C

Proof can be written in 3 steps:

1. We can rearrange the L.H.S as shown below:

 11m2x2 = 1(m+x)(mx) 2 = (m+x)+(mx)2m(m+x)(mx) 3 = (m+x)2m(m+x)(mx) + (mx)2m(m+x)(mx) 4 = 12m(mx) + 12m(m+x) 5 = 12m[1mx + 1m+x]

2. So we want:
[dxm2x2]dx=[12m[1mx + 1m+x]]dx

= [12m[1mx]]dx+[12m[1m+x]]dx

3. This integration gives:
12mlog|mx| + 12mlog|m+x|+C = 12mlog|m+xmx|+C

Formula III
[dxx2+m2]=1mtan1xm+C

Proof can be written in 3 steps:

1. Let x = m tan 𝜃.

Then we get: dxdθ=msec2θ
dx=msec2θdθ

2. So we want:

[dxx2+m2]dx=[msec2θdθ(mtanθ)2+m2]

 = [msec2θdθm2tan2θ+m2] = [msec2θdθm2(tan2θ+1)]

 = [msec2θdθm2(sec2θ)] = [dθm]

3. This integration gives:
θm+C = 1mtan1xm+C

Formula IV
[dxx2m2]=log|x+x2m2|+C

Proof can be written in 4 steps:

1. Let x = m sec 𝜃.

Then we get: dxdθ=msecθtanθ

dx=msecθtanθdθ

2. So we want:
[dxx2m2]dx=[msecθtanθdθ(msecθ)2m2]

 = [msecθtanθdθm2sec2θm2] = [msecθtanθdθm2(sec2θ1)]

 = [msecθtanθdθm2tan2θ] = [msecθtanθdθmtanθ]

 = [secθ]dθ

3. This integration gives:
log|secθ+tanθ|+C1

4. From the above result, we can eliminate 𝜃 as shown below:

• In (1), we wrote: x = m sec 𝜃.

So sec 𝜃 = x/m.

Then tanθ=sec2θ1=x2m21

• Now we get:

log|secθ+tanθ|+C1

 1 = log|xm+x2m21|+C1 2 = log|xm+x2m2m2|+C1 3 = log|x+x2m2m|+C1 4 = log|x+x2m2|log|m|+C1 5 = log|x+x2m2|+C                         

◼ Remarks:
5 (magenta color): log|m| is a constant. So it can be combined with C1 to form a new constant C.

Formula V
[dxm2x2]=sin1xm+C

Proof can be written in 3 steps:

1. Let x = m sin 𝜃.

Then we get: dxdθ=mcosθ

dx=mcosθdθ

2. So we want:
[dxm2x2]dx=[mcosθdθm2(msinθ)2]

 = [mcosθdθm2m2sin2θ] = [mcosθdθm2(1sin2θ)]

 = [mcosθdθm2cos2θ] = [1]dθ

3. This integration gives:

θ+C=sin1xm+C

Formula VI
[dxx2+m2]=log|x+x2+m2|+C

Proof can be written in 4 steps:

1. Let x = m tan 𝜃.

Then we get: dxdθ=msec2θ

dx=msec2θdθ

2. So we want:

[dxx2+m2]dx=[msec2θdθ(mtanθ)2+m2]

 = [msec2θdθm2tan2θ+m2] = [msec2θdθm2(tan2θ+1)]

 = [msec2θdθm2(sec2θ)] = [secθ]dθ

3. This integration gives:

log|secθ+tanθ|+C1

4. From the above result, we can eliminate 𝜃 as shown below:

• In (1), we wrote: x = m tan 𝜃.

So tan 𝜃 = x/m.

Then secθ=tan2θ+1=x2m2+1

• Now we get:

log|secθ+tanθ|+C1

 1 = log|x2m2+1+xm|+C1 2 = log|x2+m2m2+xm|+C1 3 = log|x2+m2+xm|+C1 4 = log|x+x2+m2|log|m|+C1 5 = log|x+x2+m2|+C                         

◼ Remarks:
5 (magenta color): log|m| is a constant. So it can be combined with C1 to form a new constant C.


We have seen six basic integrals. Using those, we can derive four more integrals. We will see them in the next section.

Previous

Contents

Next

Copyright©2025 Higher secondary mathematics.blogspot.com

No comments:

Post a Comment