Tuesday, March 18, 2025

23.12 - Some More Solved Examples on Standard Integrals

In the previous section, we saw some additional solved examples related to the standard integrals. In this section, we will see a few more solved examples.

Solved example 23.16
Find the following integrals:
(i) [dx76xx2]   (ii) [4x+12x2+x3]dx

(iii) [x+2x21]dx   (iv) [x+2x2+2x+3]dx
Solution:
Part (i):
1. We have the following data:
a = -1, b = -6 and c = 7

2. Based on this data, we can calculate two items:

(i) u=x+b2a=x+3

(ii) ±k2=cab24a2=16

3. For this problem, we need to use formula VIII:
[dxax2+bx+c] = 1a[duu2 ± k2]

[Recall that in 2(1), we put u = x + b/(2a). So du = dx]

(i) So we want

(11)[dx(x+3)2  (4)2]

 = [dx(1)[(x+3)2  (4)2]] = [dx(1)[(4)2  (x+3)2]]

 = [dx(4)2  (x+3)2]

(ii) Here we need to use formula V.

(iii) Let t=x+3

(iv) Then dtdx=1  dx=dt

(v) [dt(4)2  t2] = sin1t4+C

 = sin1x+34+C

Part (ii): [4x+12x2+x3]dx

1. We have the following data:
a = 2, b = 1, c = -3, p = 4 and q = 1

2. Based on this data, we can calculate four items:

(i) u=x+b2a=x+14

(ii) ±k2=cab24a2=2516

(iii) A=p2a=1

(iv) B=qAb=0

3. For this problem, we need to use formula X:
[px+qax2+bx+c]dx = [A(2ax+b)+Bax2+bx+c]dx

4. So we need to calculate

[1(4x+1)+02x2+x3]dx = [4x+12x2+x3]dx

• The R.H.S has only one term

5. Calculation of the R.H.S:

(i) Let t=2x2+x3

(ii) Then dtdx=4x+1  (4x+1)dx=dt

(iii) [1t]dt=t1/21/2+C

 = (2)t1/2+C = 22x2+x3+C

Part (iii): [x+2x21]

1. We have the following data:
a = 1, b = 0, c = -1, p = 1 and q = 2

2. Based on this data, we can calculate four items:

(i) u=x+b2a=x

(ii) ±k2=cab24a2=1

(iii) A=p2a=12

(iv) B=qAb=2

3. For this problem, we need to use formula X:
[px+qax2+bx+c]dx = [A(2ax+b)+Bax2+bx+c]dx

4. So we need to calculate

[12(2x+0)+2x21]dx = [xx21]dx + [2x21]dx

• The R.H.S has two terms

5. Calculation of first term in the R.H.S of (4):

(i) Let t=x21

(ii) Then dtdx=2x+0  (2x)dx=dt

(iii) [12t]dt=(12)t1/21/2+C

 = t1/2+C = x21+C1

6. Calculation of second term in the R.H.S of (4):

(i) Here we need to use formula VIII:

[dxax2+bx+c] = 1a[duu2 ± k2]

[Recall that in 2(1), we put u = x + b/(2a). So du = dx]

(ii) So we want (11)[dx(x)2  (1)2]

 = [dx(x)2  (1)2]

• Here we need to use formula IV.

(iii) We get:

[dx(x)2  (1)2] = log|x + x21| + C2

7. Now we can write the R.H.S of (4):

x21+C1 + log|x + x21|+C2

 = x21 + log|x + x21|+C

Part (iv): [x+2x2+2x+3]dx

1. We have the following data:
a = 1, b = 2, c = 3, p = 1 and q = 2

2. Based on this data, we can calculate four items:

(i) u=x+b2a=x+1

(ii) ±k2=cab24a2=2

(iii) A=p2a=12

(iv) B=qAb=1

3. For this problem, we need to use formula X:
[px+qax2+bx+c]dx = [A(2ax+b)+Bax2+bx+c]dx

4. So we need to calculate

[12(2x+2)+1x2+2x+3]dx = [12(2x+2)x2+2x+3]dx + [1x2+2x+3]dx

• The R.H.S has two terms

5. Calculation of first term in the R.H.S of (4):

(i) Let t=x2+2x+3

(ii) Then dtdx=2x+2  (2x+2)dx=dt

(iii) [12t]dt=(12)t1/21/2+C

 = t1/2+C = x2+2x+3+C1

6. Calculation of second term in the R.H.S of (4):

(i) Here we need to use formula VIII:

[dxax2+bx+c] = 1a[duu2 ± k2]

[Recall that in 2(1), we put u = x + b/(2a). So du = dx]

(ii) So we want (11)[dx(x+1)2 + (2)2]

 = [dx(x+1)2 + (2)2]

• Here we need to use formula VI.

(iii) We get:

[dx(x+1)2 + (2)2] = log|x+1 + (x+1)2+2| + C2

 = log|x+1 + x2+2x+3| + C2

7. Now we can write the R.H.S of (4):

x2+2x+3+C1 + log|x+1 + x2+2x+3|+C2

 = x2+2x+3 + log|x+1 + x2+2x+3|+C


The link below gives a few more miscellaneous examples:

Exercise 23.4


In the next section, we will see integration by partial fractions.

Previous

Contents

Next

Copyright©2025 Higher secondary mathematics.blogspot.com

No comments:

Post a Comment