In the previous section, we saw how to obtain the determinant of order 3. In this section, we will see some solved examples.
Solved example 20.3
Evaluate the determinant $\Delta \;=\; \left|\begin{array}{r} 1 &{ 2 } &{ 4 } \\
-1 &{ 3 } &{ 0 } \\
4 &{ 1 } &{ 0 } \\
\end{array}\right|$
Solution:
We will expand along C3 because, it has the maximum number of zeroes. We get:
Solved example 20.4
Evaluate $\Delta \;=\; \left|\begin{array}{r} 0 &{ \sin \alpha } &{ -\cos \alpha } \\
-\sin \alpha &{ 0 } &{ \sin \beta } \\
\cos \alpha &{ -\sin \beta } &{ 0 } \\
\end{array}\right|$
Solution:
Expanding along R1, we get:
Solved example 20.5
Find the values of x for which $\left|\begin{array}{r} 3 &{ x } \\
x &{ 1 } \\
\end{array}\right|~=~\left|\begin{array}{r}
3 &{ 2 } \\
4 &{ 1 } \\
\end{array}\right|$
Solution:
Solved example 20.6
Find the values of x if
(i) $\left|\begin{array}{r} 2 &{ 4 } \\
5 &{ 1 } \\
\end{array}\right|~=~\left|\begin{array}{r}
2x &{ 4 } \\
6 &{ x } \\
\end{array}\right|$
(ii) $\left|\begin{array}{r} 2 &{ 3 } \\
4 &{ 5 } \\
\end{array}\right|~=~\left|\begin{array}{r}
x &{ 3 } \\
2x &{ 5 } \\
\end{array}\right|$
Solution:
Part (i):
Part (ii):
Solved example 20.7
If $\left|\begin{array}{r} x &{ 2 } \\
18 &{ x } \\
\end{array}\right|~=~\left|\begin{array}{r}
6 &{ 2 } \\
18 &{ 6 } \\
\end{array}\right|$, then x is equal to
(A) 6 (B) ∓ 6 (C) -6 (D) 0
Solution:
A few more solved examples can be seen here:
In the next section, we will see properties of determinants.
Copyright©2024 Higher secondary mathematics.blogspot.com
No comments:
Post a Comment