Processing math: 100%

Thursday, January 6, 2022

Chapter 3.13 - Solved Examples on Trigonometric Identities

In the previous section, we completed the derivation of 21 trigonometric identities. We saw a solved example also. In this section, we will see a few more solved examples. The complete list of the 21 identities can be seen here.

Solved example 3.30
Find the value of (i) sin 15o (ii)  cos 15o
Solution:
• '15' must be written in terms of those numbers for which we already know the trigonometric ratios.
• '15' can be written as '45 - 30'
• We already know the sine and cosine ratios of 45 and 30
Part (i):
• We write sin 15 as sin (45 - 30)
• Using identity 8, we get:
sin15=sin(4530)=sin45cos30cos45sin30=12×3212×12=322122=3122 

Part (ii):
• We write cos 15 as cos (45 - 30)
• Using identity 4, we get:
cos15=cos(4530)=cos45cos30+sin45sin30=12×32+12×12=322+122=3+122 

Solved example 3.31
Find the value of tan13π12
Solution:
1. We can write tan13π12 as tan(12π12+π12)=tan(π+π12)
2. Using identities 9(e) and 9(f), we get:
tan(π+π12)=sin(π+π12)cos(π+π12)=sinπ12cosπ12=tanπ12
• Thus we get: tan13π12=tanπ12
3. tanπ12=sinπ12cosπ12=sin15cos15
We have already seen the values of sin 15 and cos 15 in the previous solved example 3.30. So we can write:
tan13π12=sin15cos15=3122÷3+122=3122×223+1=313+1 
4. Multiplying both numerator and denominator by (√3-1), we get:
tan13π12=(31)(31)(3+1)(31)=(31)2(3)312)=(323+1)31=(4232)=2(232)=23 

Another method:
1. Same as step (1) above.
2. Same as step (2) above.
3. tanπ12 can be written as: tan(π4π6)
Using identity 11, we get:
tan(π4π6)=tanπ4tanπ61+tanπ4tanπ6=1131+1×13=313+1 
4. Same as step (4) above.

Solved example 3.32
Prove that sin(x+y)sin(xy)=tanx+tanytanxtany
Solution:
1. Consider the LHS. Using identities 7 and 8, we get:
sin(x+y)sin(xy)=sinxcosy+cosxsinysinxcosycosxsiny


2. Dividing numerator and denominator by cos x cos y, we get:
sin(x+y)sin(xy)=sinxcosycosxcosy+cosxsinycosxcosysinxcosycosxcosycosxsinycosxcosy

sin(x+y)sin(xy)=tanx+tanytanxtany

Another method:
Consider the RHS. it can be expanded as:
tanx+tanytanxtany=sinxcosx+sinycosysinxcosxsinycosy=sinxcosy+cosxsinycosxcosysinxcosycosxsinycosxcosy=sinxcosy+cosxsinysinxcosycosxsiny=RHS 

Solved example 3.33
Show that tan 3x tan 2x tan x = tan 3x - tan 2x - tan x
Solution:
1. We can write tan 3x as: tan (2x + x)
2. We can expand tan (2x+x) using identity 10. We get:
tan(2x+x)=tan2x+tanx1tan2xtanxtan3x=tan2x+tanx1tan2xtanxtan3xtanxtan2xtan3x=tan2x+tanxtan3xtan2xtanx=tanxtan2xtan3xtan3xtan2xtanx=tan3xtan2xtanx 

Solved example 3.34
Prove that cos(π4+x)+cos(π4x)=2cosx
Solution:
• On the LHS, we have an addition of two cosines. We can convert it into a multiplication of two cosines using identity 20(a). We get:
LHS=cos(π4+x)+cos(π4x)=2cos(π4+x+π4x2)cos(π4+xπ4+x2)=2cos(π22)cos(2x2)=2cosπ4cosx=2×12cosx=2cosx=RHS 

Another method:
We can apply the identities 3 and 4 on the LHS. we get:
LHS=cos(π4+x)+cos(π4x)=cosπ4cosxsinπ4sinx+cosπ4cosx+sinπ4sinx=12×cosx12×sinx+12×cosx+12×sinx=2×12×cosx=2cosx=RHS 

Solved example 3.35
Prove that cos7x+cos5xsin7xsin5x=cotx
Solution:
• On the numerator of LHS, we have an addition of two cosines. We can convert it into a multiplication of two cosines using identity 20(a).
• On the denominator of LHS, we have a subtraction of one sine from another. We can convert it into a multiplication of two sines using identity 20(d).
• We get:
LHS=cos7x+cos5xsin7xsin5x=2cos(7x+5x2)cos(7x5x2)2cos(7x+5x2)sin(7x5x2)=cos(7x5x2)sin(7x5x2)=cos(2x2)sin(2x2)=cosxsinx=cotx=RHS 

Solved example 3.36
Prove that sin5x3sin3x+sinxcos5xcosx=tanx
Solution:
• On the numerator of LHS, we have addition and subtraction of sines. We can convert it into a multiplication of sines using identity 20(c).
   ♦ Before applying the identity, we must group them suitably.
   ♦ Note that, (5x + x)/2 = 3x
   ♦ So we must group sin 5x and sin x together
• On the denominator of LHS, we have an subtraction of one cosine from another. We can convert it into a multiplication of two cosines using identity 20(b).
• We get:
LHS=sin5x2sin3x+sinxcos5xcosx=(sin5x+sinx)2sin3xcos5xcosx=2sin(5x+x2)cos(5xx2)2sin3x2sin(5x+x2)sin(5xx2)=2sin3xcos2x2sin3x2sin3xsin2x=2sin3x(cos2x1)2sin3xsin2x=1cos2xsin2x=2sin2x2sinxcosx(Identities 14 and 15)=tanx=RHS 


Link to some more solved examples is given below:

Solved examples 3.37 to 3.48

Solved examples 3.49 to 3.62


In the next section, we will see trigonometric equations.

Previous

Contents

Next

Copyright©2021 Higher secondary mathematics.blogspot.com

No comments:

Post a Comment