In the previous section,
we completed the derivation of 21 trigonometric identities. We saw a solved example also. In this
section, we will see a few more solved examples. The complete list of the 21 identities can be seen here.
Solved example 3.30
Find the value of (i) sin 15o (ii) cos 15o
Solution:
• '15' must be written in terms of those numbers for which we already know the trigonometric ratios.
• '15' can be written as '45 - 30'
• We already know the sine and cosine ratios of 45 and 30
Part (i):
• We write sin 15 as sin (45 - 30)
• Using identity 8, we get:
sin15=sin(45−30)=sin45cos30−cos45sin30=1√2×√32−1√2×12=√32√2−12√2=√3−12√2
Part (ii):
• We write cos 15 as cos (45 - 30)
• Using identity 4, we get:
cos15=cos(45−30)=cos45cos30+sin45sin30=1√2×√32+1√2×12=√32√2+12√2=√3+12√2
Solved example 3.31
Find the value of tan13π12
Solution:
1. We can write tan13π12 as tan(12π12+π12)=tan(π+π12)
2. Using identities 9(e) and 9(f), we get:
tan(π+π12)=sin(π+π12)cos(π+π12)=−sinπ12−cosπ12=tanπ12
• Thus we get: tan13π12=tanπ12
3. tanπ12=sinπ12cosπ12=sin15cos15
We have already seen the values of sin 15 and cos 15 in the previous solved example 3.30. So we can write:
tan13π12=sin15cos15=√3−12√2÷√3+12√2=√3−12√2×2√2√3+1=√3−1√3+1
4. Multiplying both numerator and denominator by (√3-1), we get:
tan13π12=(√3−1)(√3−1)(√3+1)(√3−1)=(√3−1)2(√3)3−12)=(3−2√3+1)3−1=(4−2√32)=2(2−√32)=2−√3
Another method:
1. Same as step (1) above.
2. Same as step (2) above.
3. tanπ12 can be written as: tan(π4−π6)
Using identity 11, we get:
tan(π4−π6)=tanπ4−tanπ61+tanπ4tanπ6=1−1√31+1×1√3=√3−1√3+1
4. Same as step (4) above.
Solved example 3.32
Prove that sin(x+y)sin(x−y)=tanx+tanytanx−tany
Solution:
1. Consider the LHS. Using identities 7 and 8, we get:
sin(x+y)sin(x−y)=sinxcosy+cosxsinysinxcosy−cosxsiny
2. Dividing numerator and denominator by cos x cos y, we get:
sin(x+y)sin(x−y)=sinxcosycosxcosy+cosxsinycosxcosysinxcosycosxcosy−cosxsinycosxcosy
⇒sin(x+y)sin(x−y)=tanx+tanytanx−tany
Another method:
Consider the RHS. it can be expanded as:
tanx+tanytanx−tany=sinxcosx+sinycosysinxcosx−sinycosy=sinxcosy+cosxsinycosxcosysinxcosy−cosxsinycosxcosy=sinxcosy+cosxsinysinxcosy−cosxsiny=RHS
Solved example 3.33
Show that tan 3x tan 2x tan x = tan 3x - tan 2x - tan x
Solution:
1. We can write tan 3x as: tan (2x + x)
2. We can expand tan (2x+x) using identity 10. We get:
tan(2x+x)=tan2x+tanx1−tan2xtanx⇒tan3x=tan2x+tanx1−tan2xtanx⇒tan3x−tanxtan2xtan3x=tan2x+tanx⇒tan3x−tan2x−tanx=tanxtan2xtan3x⇒tan3xtan2xtanx=tan3x−tan2x−tanx
Solved example 3.34
Prove that cos(π4+x)+cos(π4−x)=√2cosx
Solution:
• On the LHS, we have an addition of two cosines. We can convert it into a multiplication of two cosines using identity 20(a). We get:
LHS=cos(π4+x)+cos(π4−x)=2cos(π4+x+π4−x2)cos(π4+x−π4+x2)=2cos(π22)cos(2x2)=2cosπ4cosx=2×1√2cosx=√2cosx=RHS
Another method:
We can apply the identities 3 and 4 on the LHS. we get:
LHS=cos(π4+x)+cos(π4−x)=cosπ4cosx−sinπ4sinx+cosπ4cosx+sinπ4sinx=1√2×cosx−1√2×sinx+1√2×cosx+1√2×sinx=2×1√2×cosx=√2cosx=RHS
Solved example 3.35
Prove that cos7x+cos5xsin7x−sin5x=cotx
Solution:
• On the numerator of LHS, we have an addition of two cosines. We can convert it into a multiplication of two cosines using identity 20(a).
• On the denominator of LHS, we have a subtraction of one sine from another. We can convert it into a multiplication of two sines using identity 20(d).
• We get:
LHS=cos7x+cos5xsin7x−sin5x=2cos(7x+5x2)cos(7x−5x2)2cos(7x+5x2)sin(7x−5x2)=cos(7x−5x2)sin(7x−5x2)=cos(2x2)sin(2x2)=cosxsinx=cotx=RHS
Solved example 3.36
Prove that sin5x−3sin3x+sinxcos5x−cosx=tanx
Solution:
• On the numerator of LHS, we have addition and subtraction of sines. We can convert it into a multiplication of sines using identity 20(c).
♦ Before applying the identity, we must group them suitably.
♦ Note that, (5x + x)/2 = 3x
♦ So we must group sin 5x and sin x together
• On the denominator of LHS, we have an subtraction of one cosine from another. We can convert it into a multiplication of two cosines using identity 20(b).
• We get:
LHS=sin5x−2sin3x+sinxcos5x−cosx=(sin5x+sinx)−2sin3xcos5x−cosx=2sin(5x+x2)cos(5x−x2)−2sin3x−2sin(5x+x2)sin(5x−x2)=2sin3xcos2x−2sin3x−2sin3xsin2x=2sin3x(cos2x−1)−2sin3xsin2x=1−cos2xsin2x=2sin2x2sinxcosx(Identities 14 and 15)=tanx=RHS
Link to some more solved examples is given below:
In
the next
section, we will see trigonometric equations.
Previous
Contents
Next
Copyright©2021 Higher secondary mathematics.blogspot.com
No comments:
Post a Comment