Thursday, April 10, 2025

23.17 - Solved Examples on Integration by Parts

In the previous section, we saw the basic details about Integration by parts. We saw some solved examples also. In this section, we will see a few more solved examples.

Solved Example 23.45
Find $\small{\int{\left[x \, \log 2x \right]dx}}$
Solution:
1. Assigning first and second functions:

   ♦ Let first function be: f(x) = log 2x

   ♦ Let second function be: g(x) = x

2. Finding A:

$\small{A~=~\int{\left[g(x) \right]dx}~=~\int{\left[x\right]dx}~=~\frac{x^2}{2}}$

3. $\small{\big[f(x) \left(A \right) \big]~=~\big[\log 2x \, \left(\frac{x^2}{2} \right) \big]}$

• This is the first term.

4. $\small{f'(x)~=~\frac{1}{x}}$

5. $\small{\int{\big[f'(x)\,\left(A \right)  \big]dx}~=~\int{\big[\frac{1}{x}\,\left(\frac{x^2}{2} \right)  \big]dx}~=~\frac{x^2}{4}}$

• This is the second term.

6. So we get:

$\small{\int{\left[x \, \log 2x \right]dx}~=~\text{First term - Second term}~=~\log 2x \, \left(\frac{x^2}{2} \right)~-~\frac{x^2}{4}~+~\rm{C}}$

Solved Example 23.46
Find $\small{\int{\left[x^2 \, \log x \right]dx}}$
Solution:
1. Assigning first and second functions:

   ♦ Let first function be: f(x) = log x

   ♦ Let second function be: g(x) = $\small{x^2}$

2. Finding A:

$\small{A~=~\int{\left[g(x) \right]dx}~=~\int{\left[x^2\right]dx}~=~\frac{x^3}{3}}$

3. $\small{\big[f(x) \left(A \right) \big]~=~\big[\log x \, \left(\frac{x^3}{3} \right) \big]}$

• This is the first term.

4. $\small{~f'(x)~=~\frac{1}{x}}$

5. $\small{\int{\big[f'(x)\,\left(A \right)  \big]dx}~=~\int{\big[\frac{1}{x}\,\left(\frac{x^3}{3} \right)  \big]dx}~=~\frac{x^3}{9}}$

• This is the second term.

6. So we get:

$\small{\int{\left[x^2 \, \log x \right]dx}~=~\text{First term - Second term}~=~\log x \, \left(\frac{x^3}{3} \right)~-~\frac{x^3}{9}~+~\rm{C}}$

Solved Example 23.47
Find $\small{\int{\left[x \, \sin^{-1} x \right]dx}}$
Solution:
1. Assigning first and second functions:

   ♦ Let first function be: f(x) = $\small{\sin^{-1} x}$

   ♦ Let second function be: g(x) = $\small{x}$

2. Finding A:

$\small{A~=~\int{\left[g(x) \right]dx}~=~\int{\left[x \right]dx}~=~\frac{x^2}{2}}$

3. $\small{\big[f(x) \left(A \right) \big]~=~\big[\sin^{-1}x \, \left(\frac{x^2}{2}\right) \big]}$

• This is the first term.

4. $\small{f'(x)~=~\frac{1}{\sqrt{1-x^2}}}$

5. $\small{\int{\big[f'(x)\,\left(A \right)  \big]dx}~=~\int{\big[\frac{1}{\sqrt{1-x^2}}\,\left(\frac{x^2}{2} \right)  \big]dx}~=~\frac{1}{2}\int{\big[\frac{x^2}{\sqrt{1-x^2}}  \big]dx}}$

• This is the second term. But is also a product. We will do it as a sub group:

*** Beginning of sub group ***

We want $\small{\frac{1}{2}\int{\big[\frac{x^2}{\sqrt{1-x^2}}  \big]dx}}$

(i) Let x = sin u

$\small{\Rightarrow \frac{dx}{du}\,=\,\cos u \Rightarrow\frac{dx}{\cos u}\,=\,du}$

Also, $\small{~\sqrt{1 - x^2}\,=\,\cos u}$

(ii) So we want:

$\small{\frac{1}{2}\int{\big[\frac{\sin^2 u}{\cos u}  \big]dx}\,=\,\frac{1}{2}\int{\big[\sin^2 u  \big]du}}$

(iii) This can be calculated as:

$\small{\frac{1}{2}\int{\big[\sin^2 u  \big]du}\,=\,\frac{1}{2}\int{\big[\frac{1 - \cos 2u}{2}  \big]du}\,=\,\frac{1}{4}\int{\big[1 - \cos 2u  \big]du}}$

$\small{~=~\frac{u}{4}\,-\,\frac{\sin 2u}{8}~=~\frac{u}{4}\,-\,\frac{2 \sin u \cos u}{8}}$

$\small{~=~\frac{u}{4}\,-\,\frac{\sin u \cos u}{4}~=~\frac{\sin^{-1}x}{4}\,-\,\frac{x \sqrt{1 - x^2}}{4}}$

*** End of sub group ***

6. So we get:

$\small{\int{\left[x \, \sin^{-1} x \right]dx}~=~\text{First term - Second term}}$

$\small{~=~\big[\sin^{-1}x \, \left(\frac{x^2}{2}\right) \big]~-~\big[\frac{\sin^{-1}x}{4}\,-\,\frac{x \sqrt{1 - x^2}}{4} \big]}$

$\small{~=~\sin^{-1}x \, \left(\frac{x^2}{2}\,-\,\frac{1}{4}\right)\,+\,\frac{x \sqrt{1 - x^2}}{4}\,+\,\rm{C}}$

Solved Example 23.48
Find $\small{\int{\left[x \, \tan^{-1} x \right]dx}}$
Solution:
1. Assigning first and second functions:

   ♦ Let first function be: f(x) = $\small{\tan^{-1} x}$

   ♦ Let second function be: g(x) = $\small{x}$

2. Finding A:

$\small{A~=~\int{\left[g(x) \right]dx}~=~\int{\left[x \right]dx}~=~\frac{x^2}{2}}$

3. $\small{\big[f(x) \left(A \right) \big]~=~\big[\tan^{-1}x \, \left(\frac{x^2}{2}\right) \big]}$

• This is the first term.

4. $\small{f'(x)~=~\frac{1}{1+x^2}}$

5. $\small{\int{\big[f'(x)\,\left(A \right)  \big]dx}~=~\int{\big[\frac{1}{1+x^2}\,\left(\frac{x^2}{2} \right)  \big]dx}~=~\frac{1}{2}\int{\big[\frac{x^2}{1+x^2}  \big]dx}}$

• This is the second term. But is also a product. We will do it as a sub group:

*** Beginning of sub group ***

We want $\small{\frac{1}{2}\int{\big[\frac{x^2}{1+x^2}  \big]dx}}$

(i) Let x = tan u

$\small{\Rightarrow \frac{dx}{du}\,=\,\sec^2 u \Rightarrow\frac{dx}{\sec^2 u}\,=\,du}$

Also, $\small{~1 + x^2\,=\,\sec^2 u}$

(ii) So we want:

$\small{\frac{1}{2}\int{\big[\frac{\tan^2 u}{\sec^2 u}  \big]dx}\,=\,\frac{1}{2}\int{\big[\tan^2 u  \big]du}}$

(iii) This can be calculated as:

$\small{\frac{1}{2}\int{\big[\tan^2 u  \big]du}\,=\,\frac{1}{2}\int{\big[\sec^2 u \,-\,1  \big]du}\,=\,\frac{\tan u}{2}\,-\,\frac{u}{2}}$

$\small{\,=\,\frac{x}{2}\,-\,\frac{\tan^{-1}x}{2}}$

*** End of sub group ***

6. So we get:

$\small{\int{\left[x \, \tan^{-1} x \right]dx}~=~\text{First term - Second term}}$

$\small{~=~\big[\tan^{-1}x \, \left(\frac{x^2}{2}\right) \big]~-~\big[\frac{x}{2}\,-\,\frac{\tan^{-1}x}{2}\big]}$

$\small{~=~\tan^{-1}x \, \left(\frac{x^2}{2}\,+\,\frac{1}{2}\right)\,-\,\frac{x}{2}\,+\,\rm{C}}$

Solved Example 23.49
Find $\small{\int{\left[x \, \cos^{-1} x \right]dx}}$
Solution:
1. Assigning first and second functions:

   ♦ Let first function be: f(x) = $\small{\cos^{-1} x}$

   ♦ Let second function be: g(x) = $\small{x}$

2. Finding A:

$\small{A~=~\int{\left[g(x) \right]dx}~=~\int{\left[x \right]dx}~=~\frac{x^2}{2}}$

3. $\small{\big[f(x) \left(A \right) \big]~=~\big[\cos^{-1}x \, \left(\frac{x^2}{2}\right) \big]}$

• This is the first term.

4. $\small{f'(x)~=~\frac{-1}{\sqrt{1-x^2}}}$

5. $\small{\int{\big[f'(x)\,\left(A \right)  \big]dx}~=~\int{\big[\frac{-1}{\sqrt{1-x^2}}\,\left(\frac{x^2}{2} \right)  \big]dx}~=~\frac{-1}{2}\int{\big[\frac{1}{\sqrt{1-x^2}}  \big]dx}}$

• This is the second term. But is also a product. We will do it as a sub group:

*** Beginning of sub group ***

We want $\small{\frac{-1}{2}\int{\big[\frac{x^2}{\sqrt{1-x^2}}  \big]dx}}$

(i) Let x = cos u

$\small{\Rightarrow \frac{dx}{du}\,=\,-\sin u \Rightarrow\frac{-dx}{\sin u}\,=\,du}$

Also, $\small{~\sqrt{1 - x^2}\,=\,\sin u}$

(ii) So we want:

$\small{\frac{-1}{2}\int{\big[\frac{\cos^2 u}{\sin u}  \big]dx}\,=\,\frac{1}{2}\int{\big[\cos^2 u  \big]du}}$

(iii) This can be calculated as:

$\small{\frac{1}{2}\int{\big[\cos^2 u  \big]du}\,=\,\frac{1}{2}\int{\big[\frac{1 + \cos 2u}{2}  \big]du}\,=\,\frac{1}{4}\int{\big[1 + \cos 2u  \big]du}}$

$\small{~=~\frac{u}{4}\,+\,\frac{\sin 2u}{8}~=~\frac{u}{4}\,+\,\frac{2 \sin u \cos u}{8}}$

$\small{~=~\frac{u}{4}\,+\,\frac{\sin u \cos u}{4}~=~\frac{\cos^{-1}x}{4}\,+\,\frac{x \sqrt{1 - x^2}}{4}}$

*** End of sub group ***

6. So we get:

$\small{\int{\left[x \, \cos^{-1} x \right]dx}~=~\text{First term - Second term}}$

$\small{~=~\big[\cos^{-1}x \, \left(\frac{x^2}{2}\right) \big]~-~\big[\frac{\cos^{-1}x}{4}\,+\,\frac{x \sqrt{1 - x^2}}{4} \big]}$

$\small{~=~\cos^{-1}x \, \left(\frac{x^2}{2}\,-\,\frac{1}{4}\right)\,-\,\frac{x \sqrt{1 - x^2}}{4}\,+\,\rm{C}}$

Solved Example 23.50
Find $\small{\int{\left[\sin^{-1}x \right]dx}}$
Solution:
1. Assigning first and second functions:

   ♦ Let first function be: f(x) = $\small{\sin^{-1} x}$

   ♦ Let second function be: g(x) = $\small{1}$

2. Finding A:

$\small{A~=~\int{\left[g(x) \right]dx}~=~\int{\left[1 \right]dx}~=~x}$

3. $\small{\big[f(x) \left(A \right) \big]~=~\big[\sin^{-1}x \, \left(x\right) \big]}$

• This is the first term.

4. $\small{f'(x)~=~\frac{1}{\sqrt{1-x^2}}}$

5. $\small{\int{\big[f'(x)\,\left(A \right)  \big]dx}~=~\int{\big[\frac{1}{\sqrt{1-x^2}}\,\left(x \right)  \big]dx}~=~-\sqrt{1-x^2}}$

• This is second term.

(The reader may write all steps involved in this integration process)

6. So we get:

$\small{\int{\left[\sin^{-1} x \right]dx}~=~\text{First term - Second term}}$

$\small{~=~\big[\sin^{-1}x \, \left(x\right) \big]~-~\big[-\sqrt{1-x^2} \big]}$

$\small{~=~x \sin^{-1}x~+~\sqrt{1-x^2}\,+\,\rm{C}}$

Solved Example 23.51
Find $\small{\int{\left[(\sin^{-1}x)^2 \right]dx}}$
Solution:
1. Assigning first and second functions:

   ♦ Let first function be: f(x) = $\small{\sin^{-1} x}$

   ♦ Let second function be: g(x) = $\small{\sin^{-1}x}$

2. Finding A:

$\small{A~=~\int{\left[g(x) \right]dx}~=~\int{\left[\sin^{-1}x \right]dx}~=~x \sin^{-1}x~+~\sqrt{1-x^2}}$

(See solved example 23.50 above)

3. $\small{\big[f(x) \left(A \right) \big]~=~\sin^{-1}x \big[x \sin^{-1}x~+~\sqrt{1-x^2} \big]}$

$\small{~=~\big[x (\sin^{-1}x)^2~+~\sin^{-1}x\,  \left(\sqrt{1-x^2}\right) \big]}$

• This is the first term.

4. $\small{f'(x)~=~\frac{1}{\sqrt{1-x^2}}}$

5. $\small{\int{\big[f'(x)\,\left(A \right)  \big]dx}~=~\int{\big[\frac{1}{\sqrt{1-x^2}}\,\left(x \sin^{-1}x~+~\sqrt{1-x^2} \right)  \big]dx}}$

$\small{~=~\int{\big[\frac{x \sin^{-1}x}{\sqrt{1-x^2}}~+~1  \big]dx}~=~x\,-\,(\sqrt{1-x^2}) \sin^{-1}x~+~x}$

$\small{~=~2x\,-\,\left(\sqrt{1-x^2} \right) \sin^{-1}x}$

(See solved example 23.38 of the previous section)

• This is second term.

6. So we get:

$\small{\int{\left[(\sin^{-1} x)^2 \right]dx}~=~\text{First term - Second term}}$

$\small{~=~\big[x (\sin^{-1}x)^2~+~\sin^{-1}x\,  \left(\sqrt{1-x^2}\right) \big]~-~\big[2x\,-\,\left(\sqrt{1-x^2} \right) \sin^{-1}x \big]}$

$\small{~=~x (\sin^{-1}x)^2~+~2 \sin^{-1}x\,  \left(\sqrt{1-x^2}\right) ~-~2x}$

Solved Example 23.52
Find $\small{\int{\left[\frac{x \cos^{-1} x}{\sqrt{1 - x^2}} \right]dx}}$
Solution:
1. Assigning first and second functions:

   ♦ Let first function be: f(x) = $\small{\cos^{-1}x}$

   ♦ Let second function be: g(x) = $\small{\frac{x }{\sqrt{1 - x^2}} }$

2. Finding A:

$\small{A~=~\int{\left[g(x) \right]dx}~=~\int{\left[\frac{x }{\sqrt{1 - x^2}} \right]dx}~=~-\sqrt{1-x^2}}$

3. $\small{\big[f(x) \left(A \right) \big]~=~\big[(-1)(\cos^{-1}x) \,\sqrt{1-x^2} \big]}$

• This is the first term.

4. $\small{f'(x)~=~\frac{-1}{\sqrt{1 - x^2}}}$

5. $\small{\int{\big[f'(x)\,\left(A \right)  \big]dx}~=~\int{\big[\frac{-1}{\sqrt{1 - x^2}}\,\left(-\sqrt{1-x^2} \right)  \big]dx}~=~x}$

• This is the second term.

6. So we get:

$\small{\int{\left[\frac{x \sin^{-1} x}{\sqrt{1 - x^2}} \right]dx}~=~\text{First term - Second term}}$

$\small{~=~\big[(-1)(\cos^{-1}x) \,\sqrt{1-x^2} \big]~-~\big[x \big]~+~\rm{C}}$

$\small{~=~- \big[x~+~(\cos^{-1}x) \,\sqrt{1-x^2}\big]~+~\rm{C}}$

Solved Example 23.53
Find $\small{\int{\left[x \sec^2 x \right]dx}}$
Solution:
$\small{\int{\left[x \sec^2 x \right]dx}}$

1. Assigning first and second functions:

   ♦ Let first function be: f(x) = $\small{x}$

   ♦ Let second function be: g(x) = $\small{\sec^2 x }$

2. Finding A:

$\small{A~=~\int{\left[g(x) \right]dx}~=~\int{\left[\sec^2 x \right]dx}~=~\tan x}$

3. $\small{\big[f(x) \left(A \right) \big]~=~\big[x \tan x \big]}$

• This is the first term.

4. $\small{f'(x)~=~1}$

5. $\small{\int{\big[f'(x)\,\left(A \right)  \big]dx}~=~\int{\big[1\,\left(\tan x \right)  \big]dx}~=~\log \left|\sec x \right| }$

• This is the second term.

6. So we get:

$\small{\int{\left[\frac{x \sin^{-1} x}{\sqrt{1 - x^2}} \right]dx}~=~\text{First term - Second term}}$

$\small{~=~\big[x \tan x \big]~-~\big[\log \left|\sec x \right| \big]~+~\rm{C}}$

$\small{~=~x \tan x ~+~\log \left|\frac{1}{\sec x} \right| ~+~\rm{C}}$

$\small{~=~x \tan x ~+~\log \left|\cos x \right| ~+~\rm{C}}$

Solved Example 23.54
Find $\small{\int{\left[\tan^{-1}x \right]dx}}$
Solution:
1. Assigning first and second functions:

   ♦ Let first function be: f(x) = $\small{\tan^{-1} x}$

   ♦ Let second function be: g(x) = $\small{1}$

2. Finding A:

$\small{A~=~\int{\left[g(x) \right]dx}~=~\int{\left[1 \right]dx}~=~x}$

3. $\small{\big[f(x) \left(A \right) \big]~=~\big[\tan^{-1}x \, \left(x\right) \big]}$

• This is the first term.

4. $\small{f'(x)~=~\frac{1}{1+x^2}}$

5. $\small{\int{\big[f'(x)\,\left(A \right)  \big]dx}~=~\int{\big[\frac{1}{1+x^2}\,\left(x \right)  \big]dx}~=~\frac{1}{2}\log \left|1+x^2 \right|}$

• This is second term.

(The reader may write all steps involved in this integration process)

6. So we get:

$\small{\int{\left[\tan^{-1} x \right]dx}~=~\text{First term - Second term}}$

$\small{~=~\big[\tan^{-1}x \, \left(x\right) \big]~-~\big[\frac{1}{2}\log \left|1+x^2 \right| \big]}$

$\small{~=~x \tan^{-1}x~-~\frac{1}{2}\log \left|1+x^2 \right|\,+\,\rm{C}}$

Solved Example 23.55
Find $\small{\int{\left[x (\log x)^2 \right]dx}}$
Solution:
1. Assigning first and second functions:

   ♦ Let first function be: f(x) = $\small{(\log x)^2}$

   ♦ Let second function be: g(x) = $\small{x}$

2. Finding A:

$\small{A~=~\int{\left[g(x) \right]dx}~=~\int{\left[x \right]dx}~=~\frac{x^2}{2}}$

3. $\small{\big[f(x) \left(A \right) \big]~=~\big[(\log x)^2 \, \left(\frac{x^2}{2}\right) \big]}$

• This is the first term.

4. $\small{f'(x)~=~\frac{2 \log \left|x \right|}{x}}$

5. $\small{\int{\big[f'(x)\,\left(A \right)  \big]dx}~=~\int{\big[\frac{2 \log \left|x \right|}{x}\,\left(\frac{x^2}{2} \right)  \big]dx}}$

$\small{~=~\int{\big[x\log \left|x \right|  \big]dx}~=~\log x \, \left(\frac{x^2}{2} \right)~-~\frac{x^2}{4}}$

(See solved example 23.44 of the previous section)

• This is second term.

6. So we get:

$\small{\int{\left[x (\log x)^2 \right]dx}~=~\text{First term - Second term}}$

$\small{~=~\big[(\log x)^2 \, \left(\frac{x^2}{2}\right) \big]~-~\big[\log x \, \left(\frac{x^2}{2} \right)~-~\frac{x^2}{4} \big]}$

$\small{~=~(\log x)^2 \, \left(\frac{x^2}{2}\right) ~-~\log x \, \left(\frac{x^2}{2} \right)~+~\frac{x^2}{4} }$

Solved Example 23.56
Find $\small{\int{\left[(x^2 + 1) \log x \right]dx}}$
Solution:
1. Assigning first and second functions:

   ♦ Let first function be: f(x) = log x

   ♦ Let second function be: g(x) = $\small{x^2 + 1}$

2. Finding A:

$\small{A~=~\int{\left[g(x) \right]dx}~=~\int{\left[x^2 + 1\right]dx}~=~\frac{x^3}{3}~+~x}$

3. $\small{\big[f(x) \left(A \right) \big]~=~\big[\log x \, \left(\frac{x^3}{3}~+~x \right) \big]}$

• This is the first term.

4. $\small{f'(x)~=~\frac{1}{x}}$

5. $\small{\int{\big[f'(x)\,\left(A \right)  \big]dx}~=~\int{\big[\frac{1}{x}\,\left(\frac{x^3}{3}~+~x \right)  \big]dx}~=~\frac{x^3}{9}~+~x}$

• This is the second term.

6. So we get:

$\small{\int{\left[(x^2 + 1) \log x \right]dx}~=~\text{First term - Second term}}$

$\small{~=~\log x \, \left(\frac{x^3}{3}~+~x \right)~-~\frac{x^3}{9}~-~x~+~\rm{C}}$


We have seen the method of integration by parts. In the next section, we will see a special case in this method.

Previous

Contents

Next

Copyright©2025 Higher secondary mathematics.blogspot.com

No comments:

Post a Comment