Sunday, July 28, 2024

21.19 - Second Order Derivative

In the previous section, we completed a discussion on parametric functions and their differentiation. In this section, we will see second order derivative.

The basic details can be written in 4 steps:
1. Consider the function y = f(x)
• If f(x) is differentiable, then we can write:
$\rm{\frac{dy}{dx}}\,=\,f'(x)$
2. We know that, f'(x) is also a function. If this f'(x) is differentiable, we can find it’s derivative also. In such a situation, we write:
$\rm{\frac{d}{dx} \left(\frac{dy}{dx} \right)\,=\,f''(x)}$
• $\rm{f''(x)}$ is known as the second order derivative of f(x).
• $\rm{\frac{d}{dx} \left(\frac{dy}{dx} \right)}$ is denoted as $\rm{\frac{d^2 y}{dx^2}}$
• So we get: $\rm{\frac{d^2 y}{dx^2}\,=\,f''(x)}$
3. If y = f(x) then we can write in the following ways also:
• $\rm{\frac{d^2 y}{dx^2}\,=\,f''(x)\,=\,D^2 y}$
• $\rm{\frac{d^2 y}{dx^2}\,=\,f''(x)\,=\,y''}$
• $\rm{\frac{d^2 y}{dx^2}\,=\,f''(x)\,=\,y_2}$
4. We can write steps similar to the above three, to define third order derivative, fourth order derivative, fifth order derivative, so on . . .

Let us see some solved examples

Solved example 21.60
$\rm{\text{Find}~\frac{d^2 y}{dx^2}~\text{if}~y = x^3 + tan x}$.
Solution:

Example of second order derivative.
 

Solved example 21.61
If y = A sin x + B cos x, then prove that $\rm{\frac{d^2 y}{dx^2}~+~y = 0}$.
Solution:


Solved example 21.62
If y = 3e2x + 2e2x, then prove that $\rm{\frac{d^2 y}{dx^2}~-~5\frac{dy}{dx}~+~6y = 0}$.
Solution:


Solved example 21.63
If y = sin−1x, show that $\rm{(1-x^2) \frac{d^2 y}{dx^2}~-~x \frac{dy}{dx} = 0}$.
Solution:



The link below gives a few more solved examples:

Exercise 21.7


In the next section, we will see mean value theorem.

Previous

Contents


Next

Copyright©2024 Higher secondary mathematics.blogspot.com

Saturday, July 20, 2024

21.18 - Derivatives of Parametric Functions - Solved Examples

In the previous section, we saw parametric functions and their differentiation. We saw a solved example also. In this section, we will see a few more solved examples.

Solved example 21.56
$\rm{\text{Find}~\frac{dy}{dx}~\text{if}~x = a t^2,~y = 2at}$.
Solution:

Method for differentiating parametric functions.


Solved example 21.57
$\rm{\text{Find}~\frac{dy}{dx}~\text{if}~x = a(\theta + \sin \theta) ,~y = a(1 - \cos \theta)}$.
Solution:


◼ Remarks:
• 7 (magenta color):
    ♦ In the numerator, we use the identity 15.
    ♦ In the denominator, we use the identity 14.
(List of identities can be seen here)


Solved example 21.58
$\rm{\text{Find}~\frac{dy}{dx}~\text{if}~~x^{\frac{2}{3}} + y^{\frac{2}{3}}  = a^{\frac{2}{3}}}$.
Solution:
1. Let us make the following set of substitutions:
$\rm{x^{\frac{1}{3}} = u,~~y^{\frac{1}{3}} = v,~~ a^{\frac{1}{3}} = k}$.
2. So the given expression becomes: $\rm{u^2 + v^2 = k^2}$
3. Now we make another set of substitutions:
u = k cos 𝜃, v = k sin 𝜃.
4. So the expression in (2) becomes:
$\rm{(k \cos \theta)^2 + (k \sin \theta)^2 = k^2}$, which is true.
5. So from (1) and (3), we get:
• $\rm{x^{\frac{1}{3}} = u = k \cos \theta}$
⇒ $\rm{x = k^3 \cos^3 \theta = a \cos^3 \theta}$
• $\rm{y^{\frac{1}{3}} = v = k \sin \theta}$
⇒ $\rm{y = k^3 \sin^3 \theta = a \sin^3 \theta}$
6. Thus we have a parametric equation:
$\rm{x = a \cos^3 \theta, ~ y = a \sin^3 \theta}$
• Now we can find $\rm{\frac{dy}{dx}}$ as follows:

Solved example 21.59
$\rm{\text{Find}~\frac{dy}{dx}~\text{if}~~x = 10(t - \sin t),~y = 12(1 - \cos t)}$.
Solution:




The link below gives a few more solved examples:

Exercise 21.6


In the next section, we will see second order derivatives.

Previous

Contents


Next

Copyright©2024 Higher secondary mathematics.blogspot.com

Friday, July 19, 2024

21.17 - Derivatives of Parametric Functions

In the previous section, we saw logarithmic differentiation. In this section, we will see parametric functions.

We have learned about projectile motion in our physics classes. An example in projectile motion, can be used to learn about parametric functions. It can be written in 6 steps:
1. An object is projected with a velocity of 30 ms−1 at an angle of 60o with the horizontal. Trace the path of the object. [g = 9.81 ms−2]

2. We know that:
• The point of projection is considered as the origin.
• The x-coordinate is the horizontal distance of the object from the origin.
• The y-coordinate is the vertical distance of the object from the origin.
• At the instant when the object is projected, the reading in the stop-watch will be: t = 0.

3. We know how to find the x and y coordinates:
• The x-coordinate is given by: $x = \rm{v_0 \cos \theta_0 t}$
        ✰ Eq.4.13 in section 4.10 of physics notes. 
• The y-coordinate is given by: $y = \rm{v_0 \sin \theta_0 t \,-\,\frac{1}{2}gt^2}$
        ✰ Eq.4.14 in section 4.10 of physics notes. 
• Where,
    ♦ v0 is the initial velocity
    ♦ 𝜃0 is the angle of projection.
    ♦ t is the time at which we want the coordinates.

4. We see that, both x and y coordinates are given in terms of t.
    ♦ So x is a function of a third variable ‘t’.
    ♦ y is also a function of the third variable ‘t’.
• We can write: x = f(t) and y = g(t).
• Such functions are called parametric functions.
    ♦ The third variable ‘t’ is the parameter.

5. Let us plot the various x and y positions.
• The table below gives the x and y coordinates:


(In this table, the last entry of the "time column" is obtained by finding the “time duration of the flight”) 
• The coordinates from the table, are plotted in the graph in fig.21.22 below:

Fig.21.22


• The pink smooth curve is drawn through the plotted points. Two sample plotted points are shown in the fig.
• The pink curve represents the path of the projected object. We obtained this path using a parametric function.

6. When we learned about projectile motion in the physics classes, we were not aware about parametric functions. There we plotted the pink curve by eliminating ‘t’ from the expressions for x and y. Such an elimination may not be possible in some complicated problems. For those complicated problems, parametric functions will help us to obtain the required results easily.


Now we have a basic idea about parametric functions. So we will learn the method to find the derivatives of such functions. It can be written in steps:
1. Consider the parametric equation:
x = f(t), y = g(t)

2. Assume that, by eliminating t, a direct relation F can be obtained between x and y. We can write it as: y = F(x).

3. Differentiating both sides w.r.t 't', we get:
$\rm{\frac{dy}{dt} ~=~\frac{d}{dt}(F(x))}$    

4. In the L.H.S. of (3), y is equal to g(t). So 't' is the variable. We can easily calculate $\rm{\frac{dy}{dt}}$

5. In the R.H.S. of (3), F(x) does not have t. This is because, F(x) is the direct relation between x and y. It is obtained by eliminating 't'.
• So we cannot find $\rm{\frac{d}{dt}(F(x))}$ directly. We need to use the chain rule. We get:
$\rm{\frac{d}{dt}(F(x))}~=~\frac{dF}{dx}.\frac{dx}{dt}$

6. So the equation in (3) becomes:
$\rm{\frac{dy}{dt} ~=~\frac{dF}{dx}.\frac{dx}{dt}}$
• Consider the R.H.S. of the above equation.
• From (2) we see that, F is same as y. So this equation becomes:
$\rm{\frac{dy}{dt} ~=~\frac{dy}{dx}.\frac{dx}{dt}}$
• From this we get:
$\rm{\frac{dy}{dx}~=~\frac{\frac{dy}{dt}}{\frac{dx}{dt}}}$

7. We can use the result in (6) above, to find $\rm{\frac{dy}{dx}}$, when x and y are given in terms of a third variable 't'.


Now we will see a solved example.

Solved example 21.55
$\rm{\text{Find}~\frac{dy}{dx}~\text{if}~x = a \cos \theta,~y = a \sin \theta}$.
Solution:
$\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{x}    & {~=~}    &{a \cos \theta}    \\
{~\color{magenta}    2    }    &{\implies}    &{\frac{dx}{d \theta}}    & {~=~}    &{-a \sin \theta}    \\
{~\color{magenta}    3    }    &{{}}    &{y}    & {~=~}    &{a \sin \theta}    \\
{~\color{magenta}    4    }    &{\implies}    &{\frac{dy}{d \theta}}    & {~=~}    &{a \cos \theta}    \\
{~\color{magenta}    5    }    &{\text{Therefore}}    &{\frac{dy}{dx}}    & {~=~}    &{\frac{\frac{dy}{d \theta}}{\frac{dx}{d \theta}}}    \\
{~\color{magenta}    6    }    &{{}}    &{{}}    & {~=~}    &{\frac{a \cos \theta}{-a \sin \theta}}    \\
{~\color{magenta}    7    }    &{{}}    &{{}}    & {~=~}    &{-\cot \theta}    \\
\end{array}$


In the next section, we will see a few more solved examples.

Previous

Contents


Next

Copyright©2024 Higher secondary mathematics.blogspot.com

Sunday, July 14, 2024

21.16 - Logarithmic Differentiation

In the previous section, we saw the methods to find the derivatives of exponential and logarithmic functions. In this section, we will see logarithmic differentiation.

The basic details can be written in 3 steps:
1. Consider the function: $\rm{y=f(x)=[u(x)]^{v(x)}}$
    ♦ The base is a function of x.
    ♦ Exponent is also a function of x.

2. For differentiating this type of functions, we take logarithm on both sides. We get:
$\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{\log(y)}    & {~=~}    &{\log \left([u(x)]^{v(x)} \right)}    \\
{~\color{magenta}    2    }    &{\implies}    &{\log(y)}    & {~=~}    &{v(x) \log [u(x)]}    \\
\end{array}$

3. Now we can apply the chain rule and obtain the derivative. This is shown below:

$\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{\log(y)}    & {~=~}    &{v(x) \log [u(x)]}    \\
{~\color{magenta}    2    }    &{\implies}    &{\frac{d}{dx} \left(\log(y) \right)}    & {~=~}    &{\frac{d}{dx} \left(v(x) \log [u(x)] \right)}    \\
{~\color{magenta}    3    }    &{\implies}    &{\frac{1}{y} . \frac{d}{dx}(y)}    & {~=~}    &{\frac{d}{dx} \left(v(x) \right) . \log[u(x)]\,+\,v(x) . \frac{d}{dx} \left(\log[u(x)] \right)}    \\
{~\color{magenta}    4    }    &{\implies}    &{\frac{1}{y} . \frac{dy}{dx}}    & {~=~}    &{v'(x) . \log[u(x)]\,+\,v(x) . \frac{1}{u(x)} \frac{d}{dx} \left(u(x) \right)}    \\
{~\color{magenta}    5    }    &{\implies}    &{\frac{1}{y} . \frac{dy}{dx}}    & {~=~}    &{v'(x) . \log[u(x)]\,+\,v(x) . \frac{1}{u(x)} u'(x)}    \\
{~\color{magenta}    6    }    &{\implies}    &{\frac{dy}{dx}}    & {~=~}    &{y \left[v'(x) . \log[u(x)]\,+\,v(x) . \frac{1}{u(x)} u'(x) \right]}    \\
\end{array}$                           

◼ Remarks:
• 2(magenta color):
    ♦ We are taking the logarithm of y. That means, we are taking the logarithm of f(x). So f(x) must be +ve.
    ♦ Similarly, we are taking the logarithm of u(x). So u(x) must be +ve.


Let us see some solved examples:

Solved example 21.51
Find $\rm{\frac{dy}{dx}~\text{if}~y\,=\,\sqrt{\frac{(x-3)(x^2 + 4)}{3x^2 + 4x + 5}}}$
Solution:
1. Let us name the functions, so that, given y can be written in a short form:
    ♦ u(x) = x − 3
    ♦ v(x) = x2+4
    ♦ z(x) = 3x2 + 4x + 5
• Then $\rm{y\,=\,\sqrt{\frac{u(x).v(x)}{z(x)}}}$ 

2. Taking logarithm on both sides, we get:
$\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{\log(y)}    & {~=~}    &{\log \left(\sqrt{\frac{u(x).v(x)}{z(x)}} \right)}    \\
{~\color{magenta}    2    }    &{{}}    &{{}}    & {~=~}    &{\frac{1}{2} \log \left({\frac{u(x).v(x)}{z(x)}} \right)}    \\
{~\color{magenta}    3    }    &{{}}    &{{}}    & {~=~}    &{\frac{1}{2} \left(\log u(x)\,+\,\log v(x) \,-\, \log z(x) \right)}    \\
\end{array}$                           

3. Now we can find the derivative as follows:

$\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{\log(y)}    & {~=~}    &{\frac{1}{2} \left(\log u(x)\,+\,\log v(x) \,-\, \log z(x) \right)}    \\
{~\color{magenta}    2    }    &{\implies}    &{\frac{d}{dx} \left(\log(y) \right)}    & {~=~}    &{\frac{d}{dx} \left[\frac{1}{2} \left(\log u(x)\,+\,\log v(x) \,-\, \log z(x) \right) \right]}    \\
{~\color{magenta}    3    }    &{\implies}    &{\frac{1}{y}.\frac{d}{dx} (y) }    & {~=~}    &{\frac{1}{2} \frac{d}{dx} \left[\log u(x)\,+\,\log v(x) \,-\, \log z(x) \right]}    \\
{~\color{magenta}    4    }    &{\implies}    &{\frac{1}{y} . \frac{dy}{dx}}    & {~=~}    &{\frac{1}{2}  \left[\frac{d}{dx} \log u(x)\,+\,\frac{d}{dx} \log v(x) \,-\, \frac{d}{dx} \log z(x) \right]}    \\
{~\color{magenta}    5    }    &{\implies}    &{\frac{1}{y} . \frac{dy}{dx}}    & {~=~}    &{\frac{1}{2}  \left[\frac{1}{u(x)} . u'(x)\,+\,\frac{1}{v(x)} . v'(x) \,-\, \frac{1}{z(x)} . z'(x) \right]}    \\
{~\color{magenta}    6    }    &{\implies}    &{\frac{1}{y} . \frac{dy}{dx}}    & {~=~}    &{\frac{1}{2}  \left[\frac{1}{x-3} . (1)\,+\,\frac{1}{x^2 - 4} . (2x) \,-\, \frac{1}{3x^2 + 4x + 5} . (6x+4) \right]}    \\
{~\color{magenta}    7    }    &{\implies}    &{\frac{dy}{dx}}    & {~=~}    &{\frac{y}{2} \left[\frac{1}{x-3} \,+\,\frac{2x}{x^2 - 4} \,-\, \frac{ 6x+4}{3x^2 + 4x + 5} \right]}    \\
{~\color{magenta}    8    }    &{{}}    &{{}}    & {~=~}    &{\frac{1}{2} \sqrt{\frac{(x-3)(x^2 + 4)}{3x^2 + 4x + 5}} \left[\frac{1}{x-3} \,+\,\frac{2x}{x^2 - 4} \,-\, \frac{ 6x+4}{3x^2 + 4x + 5} \right]}    \\
\end{array}$

Solved example 21.52
Differentiate ax w.r.t. x, where a is a positive constant.
Solution:
1. Let y = ax.
2. Taking logarithm on both sides, we get:
log y = x log a.
3. Now we can find the derivative as follows:


Alternate method:
• First we will prove the identity: u = elog u.
• Proof can be written in (ii) steps:
(i) Let v = elog u.
(ii) Taking log on both sides, we get:
log v = log(elog u) = log u.log e= log u.(1) = log u
⇒ log v = log u
⇒ v = u
⇒ elog u = u

1. Let y = ax.
2. $\rm{a^x~\text{is same as}~e^{\log a^x}}$
3. So we get: $\rm{y = e^{\log a^x}}$
4. Now we can find the derivative as follows:


 

Solved example 21.53
Differentiate xsin x , x>0 w.r.t. x.
Solution:
1. Let y = xsin x, x>0
2. Taking logarithm on both sides, we get:
log y = sin x log x.
3. Now we can find the derivative as follows:


Solved example 21.54
Find $\rm{\frac{dy}{dx}~\text{if}~y^x\,+\,x^y\,+\,x^x\,=\,a^b}$.
Solution:
1. Given that: yx + xy + xx = ab.
2. Let us write the L.H.S as the sum of three functions:
u(x) + v(x) + w(x) = ab.
• Where:
   ♦ u(x) = yx .
   ♦ v(x) = xy .
   ♦ w(x) = xx .
3. Now we get:


4. First we will find $\rm{\frac{du}{dx}}$:


5. Next we will find $\rm{\frac{dv}{dx}}$:

6. Finally we will find $\rm{\frac{dw}{dx}}$:


7. Substituting the above results in (3), we get:


The link below gives a few more solved examples:

Exercise 21.5


In the next section, we will see derivatives of functions in parametric forms.

Previous

Contents


Next

Copyright©2024 Higher secondary mathematics.blogspot.com

Sunday, July 7, 2024

21.15 - Derivatives of Exponential and Logarithmic Functions

In the previous section, we completed a discussion on exponential and logarithmic functions. In this section, we will see the derivatives of those two functions.

First we will see the derivative of exponential function.
• If f(x) = ex, then it’s derivative is the same ex.
• That is., if f(x) = ex, then f'(x) = ex.
    ♦ In other words, $\rm{\text{if}~y = e^x,~\text{then},~\frac{dy}{dx} = e^x}$
• We will see the proof in higher classes. At present, we will see a simple application of this derivative.  It can be written in 5 steps:

1. The red curve in fig.21.20 below shows the graph of f(x) = ex.

Fig.21.20

2. Mark any convenient point on the curve. Let us mark the point with x-coordinate 1.5.
• Since the x-coordinate is 1.5,
y-coordinate = e1.5 = 4.4816
• We will use a single decimal place and write:
e1.5 = 4.5.
• So the coordinates are (1.5,4.5). We will name this point as P
 

3. Next, we want the derivative of f(x) at x = 1.5
• That is, we want f'(1.5).
• We wrote that, f'(x) is the same ex.
So f'(1.5) = e1.5 = 4.5

4. We know that, f'(1.5) will be the slope of the tangent at x = 1.5
• Let us draw a line through P, at a slope of f'(1.5).
We have a point P(1.5,4.5) and slope 4.5. So the equation of this line will be:
$\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{y-y_1}    & {~=~}    &{\text{slope} \times (x - x_1)}    \\
{~\color{magenta}    2    }    &{\implies}    &{y-4.5}    & {~=~}    &{4.5 \times (x – 1.5)}    \\
{~\color{magenta}    3    }    &{\implies}    &{y-4.5}    & {~=~}    &{4.5 x \,–\, 6.75}    \\
{~\color{magenta}    4    }    &{\implies}    &{y}    & {~=~}    &{4.5 x \,–\, 2.25}    \\
\end{array}$                           

• Let us plot this line. It is shown in green color in fig.21.20 above.
(note that, the y-intercept of the green line in the fig.21.20 is −2.25)
• We see that, the green line is the tangent at P.   

5. Let us write a summary:
(i) We calculated e1.5, which is the ex at P(1.5,4.5).
(ii) We drew a line through P(1.5,4.5) at a slope equal to e1.5.
(iii) That line happens to be the tangent at P. So e 1.5 is the derivative at P
(iv) Therefore, the general form of the derivative is ex.

Note that, the above demonstration is not a proof. We will see the actual proof in higher classes.


Now we will see the derivative of log function.
• If f(x) = log x, then it’s derivative is $\rm{\frac{1}{x}}$.
• That is., if f(x) = log x, then f'(x) = $\rm{\mathbf{{\frac{1}{x}}}}$.
    ♦ In other words, $\rm{\text{if}~y = \log x,~\text{then},~\frac{dy}{dx} = \frac{1}{x}}$
(Recall that, in this chapter, when we write log x, it means, base is e)
• We will see the proof in higher classes. At present, we will see a simple application of this derivative.  It can be written in 5 steps:

1. The red curve in fig.21.21 below shows the graph of f(x) = log x.

Fig.21.21

2. Mark any convenient point on the curve. Let us mark the point with x-coordinate 2.0
• Since the x-coordinate is 2.0,
y-coordinate = log 2 = 0.6931
• We will use a single decimal place and write:
log = 0.7
• So the coordinates are (2,0.7). We will name this point as P
 

3. Next, we want the derivative of f(x) at x = 2
• That is, we want f'(2).
• We wrote that, f'(x) is $\frac{1}{x}$.
So f'(2) = $\rm{\frac{1}{2}}$ = 0.5

4. We know that, f'(2) will be the slope of the tangent at x = 2
• Let us draw a line through P, at a slope of f'(2).
We have a point P(2,0.7) and slope 0.5. So the equation of this line will be:
$\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{y-y_1}    & {~=~}    &{\text{slope} \times (x - x_1)}    \\
{~\color{magenta}    2    }    &{\implies}    &{y-0.7}    & {~=~}    &{0.5 \times (x – 2)}    \\
{~\color{magenta}    3    }    &{\implies}    &{y-0.7}    & {~=~}    &{0.5 x \,–\, 1}    \\
{~\color{magenta}    4    }    &{\implies}    &{y}    & {~=~}    &{0.5 x \,–\, 0.3}    \\
\end{array}$                           

• Let us plot this line. It is shown in green color in fig.21.21 above.
(note that, the y-intercept of the green line in the fig.21.20 is −0.3)
• We see that, the green line is the tangent at P.   

5. Let us write a summary:
(i) We calculated $\frac{1}{x}$  at P(2,0.7).
(ii) We drew a line through P(2,0.7) at a slope equal to $\frac{1}{2}$.
(iii) That line happens to be the tangent at P. So $\frac{1}{x}$ is the derivative at P
(iv) Therefore, the general form of the derivative is $\frac{1}{x}$.

Note that, the above demonstration is not a proof. We will see the actual proof in higher classes.


Now we will see some solved examples:

Solved example 21.50
Differentiate the following w.r.t to x:
(i) e−x    (ii) sin(log x), x>0    (iii) cos−1(ex)    (iv) ecos x.
Solution:
Part (i):


◼ Remarks:
• 3(Magenta color): Here we apply chain rule.

Alternate method:

◼ Remarks:
• 2(Magenta color): Here we take logarithm on both sides.
• 4(Magenta color): Here we apply chain rule.
• 5(Magenta color): Here we apply the fact that, logee = 1.

Part (ii):


◼ Remarks:
• 3(Magenta color): Here we apply chain rule.

Part (iii):


◼ Remarks:
• 3(Magenta color): Here we apply chain rule. 

Part (iv):


◼ Remarks:
• 3(Magenta color): Here we apply chain rule.


Link to a few more solved examples is given below:

Exercise 21.4


In the next section, we will see logarithmic differentiation.

Previous

Contents


Next

Copyright©2024 Higher secondary mathematics.blogspot.com

Monday, July 1, 2024

21.14 - Solution of Exponential and Logarithmic Functions

In the previous section, we saw properties of logarithms. In this section, we will see some solved examples which demonstrate the process of solving exponential and logarithmic equations.

Solved example 21.46
Solve the equation: log(6x) − log(4-x) = log 3
Solution:
$\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{\log (6x) - \log (4-x)}    & {~=~}    &{\log (3)}    \\
{~\color{magenta}    2    }    &{\implies}    &{\log \left(\frac{6x}{4-x} \right)}    & {~=~}    &{\log (3)}    \\
{~\color{magenta}    3    }    &{\implies}    &{\frac{6x}{4-x}}    & {~=~}    &{3}    \\
{~\color{magenta}    4    }    &{\implies}    &{6x}    & {~=~}    &{12 – 3x}    \\
{~\color{magenta}    5    }    &{\implies}    &{9x}    & {~=~}    &{12}    \\
{~\color{magenta}    6    }    &{\implies}    &{x}    & {~=~}    &{\frac{4}{3}}    \\
\end{array}$                           

Check:
$\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{\log (6(4/3)) - \log (4- 4/3)}    & {~=~}    &{\log (3)}    \\
{~\color{magenta}    2    }    &{\implies}    &{\log (8) - \log (8/3)}    & {~=~}    &{\log (3)}    \\
{~\color{magenta}    3    }    &{\implies}    &{\frac{8}{8/3}}    & {~=~}    &{3}    \\
{~\color{magenta}    4    }    &{\implies}    &{3}    & {~=~}    &{3}    \\
\end{array}$

Solved example 21.47
Solve the equation: ln(4 −3x) − ln(7x) = ln(11)
Solution:
$\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{\ln(4-3x) - \ln(7x)}    & {~=~}    &{\ln(11)}    \\
{~\color{magenta}    2    }    &{\implies}    &{\ln\left[\frac{4-3x}{7x} \right]}    & {~=~}    &{\ln(11)}    \\
{~\color{magenta}    3    }    &{\implies}    &{\frac{4-3x}{7x}}    & {~=~}    &{11}    \\
{~\color{magenta}    4    }    &{\implies}    &{4 – 3x}    & {~=~}    &{77x}    \\
{~\color{magenta}    5    }    &{\implies}    &{80x}    & {~=~}    &{4}    \\
{~\color{magenta}    6    }    &{\implies}    &{x}    & {~=~}    &{\frac{1}{20}}    \\
\end{array}$                            
 

Check:
$\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{\ln(4-3x) - \ln(7x)}    & {~=~}    &{\ln(11)}    \\
{~\color{magenta}    2    }    &{\implies}    &{\ln(4-3(1/20)) - \ln(7(1/20))}    & {~=~}    &{\ln(11)}    \\
{~\color{magenta}    3    }    &{\implies}    &{\ln(77/20) - \ln(7/20)}    & {~=~}    &{\ln(11)}    \\
{~\color{magenta}    4    }    &{\implies}    &{\ln(77) - \ln(20) - \ln(7) + \ln(20)}    & {~=~}    &{\ln(11)}    \\
{~\color{magenta}    5    }    &{\implies}    &{\ln(77) - \ln(7)}    & {~=~}    &{\ln(11)}    \\
{~\color{magenta}    6    }    &{\implies}    &{\ln(77/7)}    & {~=~}    &{\ln(11)}    \\
{~\color{magenta}    7    }    &{\implies}    &{\ln(11)}    & {~=~}    &{\ln(11)}    \\
\end{array}$

Solved example 21.48
Solve the equation: log8 (4x + 1) = −1
Solution:

Check:


Solved example 21.49
Solve the equation: 2e3y+8 − 11e5−10y = 0
Solution:


Check:



We have seen the process of solving exponential and logarithmic equations. The reader is advised to try a large number of practice problems in this category. In the next section, we will see derivatives of exponential and logarithmic functions.

Previous

Contents

Next

Copyright©2024 Higher secondary mathematics.blogspot.com