In the previous section, we saw properties of logarithms. In this section, we will see some solved examples which demonstrate the process of solving exponential and logarithmic equations.
Solved example 21.46
Solve the equation: log(6x) − log(4-x) = log 3
Solution:
$\begin{array}{ll} {~\color{magenta} 1 } &{{}} &{\log (6x) - \log (4-x)} & {~=~} &{\log (3)} \\
{~\color{magenta} 2 } &{\implies} &{\log \left(\frac{6x}{4-x} \right)} & {~=~} &{\log (3)} \\
{~\color{magenta} 3 } &{\implies} &{\frac{6x}{4-x}} & {~=~} &{3} \\
{~\color{magenta} 4 } &{\implies} &{6x} & {~=~} &{12 – 3x} \\
{~\color{magenta} 5 } &{\implies} &{9x} & {~=~} &{12} \\
{~\color{magenta} 6 } &{\implies} &{x} & {~=~} &{\frac{4}{3}} \\
\end{array}$
Check:
$\begin{array}{ll} {~\color{magenta} 1 } &{{}} &{\log (6(4/3)) - \log (4- 4/3)} & {~=~} &{\log (3)} \\
{~\color{magenta} 2 } &{\implies} &{\log (8) - \log (8/3)} & {~=~} &{\log (3)} \\
{~\color{magenta} 3 } &{\implies} &{\frac{8}{8/3}} & {~=~} &{3} \\
{~\color{magenta} 4 } &{\implies} &{3} & {~=~} &{3} \\
\end{array}$
Solved example 21.47
Solve the equation: ln(4 −3x) − ln(7x) = ln(11)
Solution:
$\begin{array}{ll} {~\color{magenta} 1 } &{{}} &{\ln(4-3x) - \ln(7x)} & {~=~} &{\ln(11)} \\
{~\color{magenta} 2 } &{\implies} &{\ln\left[\frac{4-3x}{7x} \right]} & {~=~} &{\ln(11)} \\
{~\color{magenta} 3 } &{\implies} &{\frac{4-3x}{7x}} & {~=~} &{11} \\
{~\color{magenta} 4 } &{\implies} &{4 – 3x} & {~=~} &{77x} \\
{~\color{magenta} 5 } &{\implies} &{80x} & {~=~} &{4} \\
{~\color{magenta} 6 } &{\implies} &{x} & {~=~} &{\frac{1}{20}} \\
\end{array}$
Check:
$\begin{array}{ll} {~\color{magenta} 1 } &{{}} &{\ln(4-3x) - \ln(7x)} & {~=~} &{\ln(11)} \\
{~\color{magenta} 2 } &{\implies} &{\ln(4-3(1/20)) - \ln(7(1/20))} & {~=~} &{\ln(11)} \\
{~\color{magenta} 3 } &{\implies} &{\ln(77/20) - \ln(7/20)} & {~=~} &{\ln(11)} \\
{~\color{magenta} 4 } &{\implies} &{\ln(77) - \ln(20) - \ln(7) + \ln(20)} & {~=~} &{\ln(11)} \\
{~\color{magenta} 5 } &{\implies} &{\ln(77) - \ln(7)} & {~=~} &{\ln(11)} \\
{~\color{magenta} 6 } &{\implies} &{\ln(77/7)} & {~=~} &{\ln(11)} \\
{~\color{magenta} 7 } &{\implies} &{\ln(11)} & {~=~} &{\ln(11)} \\
\end{array}$
Solved example 21.48
Solve the equation: log8 (4x + 1) = −1
Solution:
Check:
Solved example 21.49
Solve the equation: 2e3y+8 − 11e5−10y = 0
Solution:
Check:
We have seen the process of solving exponential and logarithmic equations. The reader is advised to try a large number of practice problems in this category. In the next section, we will see derivatives of exponential and logarithmic functions.
Previous
Contents
Next
Copyright©2024 Higher secondary mathematics.blogspot.com
No comments:
Post a Comment