Processing math: 100%

Friday, January 19, 2024

18.8 - Properties II and III

In the previous section, we saw the first property of inverse trigonometric functions. In this section, we will see the second and third properties.

Property II
• This has 3 parts:
(i)sin1(x)=sin1x,x[1,1](ii)tan1(x)=tan1x,xR(iii)csc1(x)=csc1x,|x|1

• Let us prove part (i):
Let sin1(x) = y - - - (A)siny = xsiny = xsin(y) = x - - - (B)sin1x = ysin1x = ysin1x = sin1(x) - - - (C)               

◼ Remarks:
• In line (A), we assume that sin1(x) = y
• In line B, we use the identity 1: sin (-𝜃) = - sin 𝜃
    ♦ List of identities can be seen here.
• In line C, we substitute for y, using the assumption in (A).

• Let us prove part (ii):
Let tan1(x) = y - - - (A)tany = xtany = xtan(y) = x - - - (B)tan1x = ytan1x = ytan1x = tan1(x) - - - (C)               

◼ Remarks:
• In line (A), we assume that tan1(x) = y
• In line B, we use the identities 1 and 2 to get: tan (-𝜃) = - tan 𝜃
    ♦ List of identities can be seen here.
• In line C, we substitute for y, using the assumption in (A).

• Let us prove part (iii):
Let csc1(x) = y - - - (A)cscy = xcscy = x1siny = xsiny = 1xsin(y) = 1x - - - (B)sin1(1x) = ycsc1x = y - - - (C)csc1x = csc1(x) - - - (D)csc1x = csc1(x)

◼ Remarks:
• In line (A), we assume that csc1(x) = y
• In line B, we use the identity 1: sin (-𝜃) = - sin 𝜃
    ♦ List of identities can be seen here.
• In line C, we use part (i) of property I
• In line D, we substitute for y, using the assumption in (A).


Property III
• This has 3 parts:
(i)cos1(x)=πcos1x,x[1,1](ii)sec1(x)=πsec1x,|x|1(iii)cot1(x)=πcot1x,xR

• Let us prove part (i):


◼ Remarks:
• In line (A), we assume that cos1(x) = y
• In line B, we use the identity 1: cos (π-𝜃) = - cos 𝜃
    ♦ List of identities can be seen here.
• In line C, we substitute for y, using the assumption in (A).

• Let us prove part (ii):


◼ Remarks:
• In line (A), we assume that sec1(x) = y
• In line B, we use the identity 1: cos (π-𝜃) = - cos 𝜃
    ♦ List of identities can be seen here.
• In line C, we use part (ii) of property I
• In line D, we substitute for y, using the assumption in (A).

• Let us prove part (iii):


◼ Remarks:
• In line (A), we assume that cot1(x) = y
• In line B, we use the identities 9(c) and 9(d) to get: cot (π-𝜃) = - cot 𝜃
    ♦ List of identities can be seen here.
• In line C, we substitute for y, using the assumption in (A).


In the next section, we will see fourth and fifth properties.

Previous

Contents

Next

Copyright©2024 Higher secondary mathematics.blogspot.com

No comments:

Post a Comment