Loading [MathJax]/jax/output/HTML-CSS/jax.js

Saturday, June 4, 2022

Chapter 5.7 - Miscellaneous Examples

In the previous section, we completed a discussion on quadratic equations. We saw some miscellaneous examples also. In this section, we will see a few more miscellaneous examples.

Solved example 5.13
If x+yi = a+biabi, prove that x2+y2=1
Solution:
1. We will change the right side into the general form:
a+biabi=a+biabi×a+bia+bia+biabi=a2+2abib2a2+b2a+biabi=a2b2a2+b2 + 2abia2+b2a+biabi=a2b2a2+b2 + (2aba2+b2)i
2. So the given expression becomes: x+yi = a2b2a2+b2 + (2aba2+b2)i
3. Equating the corresponding real and imaginary parts, we get:
x = a2b2a2+b2
y = 2aba2+b2
4. Now we can find x2+y2:
x2+y2=(a2b2a2+b2)2 + (2aba2+b2)2x2+y2=(a2b2)2 + (2ab)2(a2+b2)2x2+y2=a42a2b2+b4 + 4a2b2(a2+b2)2x2+y2=a4+2a2b2+b4(a2+b2)2x2+y2=(a2+b2)2(a2+b2)2x2+y2=1

Solved example 5.14
Find real 𝜽 such that 3+2isinθ12isinθ is purely real
Solution:
1. We will change the given expression into the general form:
3+2isinθ12isinθ=3+2isinθ12isinθ × 1+2isinθ1+2isinθ3+2isinθ12isinθ=3+6isinθ+2isinθ4sin2θ1+4sin2θ3+2isinθ12isinθ=3+8isinθ4sin2θ1+4sin2θ3+2isinθ12isinθ=34sin2θ1+4sin2θ + 8isinθ1+4sin2θ3+2isinθ12isinθ=34sin2θ1+4sin2θ + (8sinθ1+4sin2θ)i
2. So the given complex number is: 34sin2θ1+4sin2θ + (8sinθ1+4sin2θ)i
3. If this complex number is to be purely real, the imaginary part must be zero.
• That is., 8sinθ1+4sin2θ must be zero.
• Denominator cannot be zero because, division by zero will give a number which does not exist.
• So we can write:
If the given complex number is to be purely real, 8sinθ must be zero.
   ♦ That is., 8sinθ = 0
   ♦ This is true only when sin 𝜽 = 0
4. sin 𝜽 = 0 is a trigonometrical equation.
• We know that, this equation is true whenever 𝜽 is a multiple of 𝞹
5. So we can write:
The given complex number will be purely real when 𝜽 = n𝞹
   ♦ Where n is member of the set of integers Z.

Solved example 5.15
Convert the complex number i1cosπ3+isinπ3 in the polar form.
Solution:
1. We will change the given expression into the general form:
i1cosπ3+isinπ3=i1cosπ3+isinπ3 × cosπ3isinπ3cosπ3isinπ3i1cosπ3+isinπ3=(i1)(cosπ3isinπ3)cos2π3+sin2π3i1cosπ3+isinπ3=(i1)(1232i)1i1cosπ3+π3=(i1)(1232i)i1cosπ3+π3=12i+3212+32ii1cosπ3+π3=312 + (3+12)i
2. Now the complex number is in the form x+yi
We have to convert it into the form r[cos 𝜽+ i sin 𝜽]
3. We know that the modulus r is given by: r=x2+y2
So in our present case,
r=x2+y2r=(312)2+(3+12)2r=(31)2+(3+1)24r=323+1 + 3+23+14r=84r=2
4. Since x+yi and r[cos 𝜽+ i sin 𝜽] represent the same complex number, we can equate the corresponding real and imaginary parts. We get:
    ♦ x = r cos 𝜽
    ♦ y = r sin 𝜽
5. From this we get:
(i) 312=2cosθ
(ii) 3+12=2sinθ
• sin 𝜽 is +ve. cos 𝜽 is also +ve. So it is in the first quadrant.
6. Taking ratios, (ii) to (i), we get:
2sinθ2cosθ=3+12312
tanθ=3+131
• This is a trigonometrical equation. We learned to solve them in chapter 3. (Details here)
7. We have, tan5π12 = tan75o = 3+131
Proof:
tan5π12=tan(5π12 × 22) = tan10π24tan5π12=tan(π4+π6)tan5π12=tanπ4 + tanπ61tanπ4tanπ6tan5π12tan(p+q)=tanp+tanq1tanptanqtan5π12=1 + 1311×13tan5π12=3+131
• From this we get: θ=5π12
• This 𝜽 is in the first quadrant. So there is no need to find the other value of 𝜽.
8. Thus we get the values of r and 𝜽:
   ♦ From (3), we get: r=2
   ♦ From (7),we get: θ=5π12
• So the polar form is: 2[cos5π12+isin5π12]
• The red dot in fig.5.9 below represents the complex number:

Fig.5.9

Solved example 5.16
Find the complex number z if |z+1|=z+2(1+i).
Solution:
1. Let z = a+bi. Then the given equation becomes:
|a+bi+1|=a+bi+2(1+i)|(a+1)+bi|=a+bi+2+2i(a+1)2+b2=a+2+(b+2)i
2. Equating the corresponding real and imaginary parts, we get:
(i) (a+1)2+b2 = a+2
(ii) 0 = b+2
3. From (ii), we get: b = -2
• Substituting for b in (i), we get:
(a+1)2+b2=a+2(a+1)2+(2)2=a+2a2+2a+1+4=a+2a2+2a+5=a+2a2+2a+5=(a+2)2123i(Squaring both sides)a2+2a+5=a2+4a+41=2aa=12
4. Thus the complex number z = a+bi is 122i


The link below gives a PDF file with more miscellaneous examples

Miscellaneous exercise on chapter 5


In the next chapter, we will see linear inequalities.

Previous

Contents

Next

Copyright©2022 Higher secondary mathematics.blogspot.com

No comments:

Post a Comment