Saturday, December 13, 2025

25.12 - More Solved Examples on Linear Differential equations

In the previous section, we saw some solved examples on the solution of linear differential equations. In this section, we will see a few more solved examples.

Solved example 25.71
Find the general solution of the differential equation $\boldsymbol{y dx~+~\left(x - y^2 \right)dy~=~0}$.
Solution
:
1. The given differential equation is:
$\small{y dx~+~\left(x - y^2 \right)dy~=~0}$

This can be rearranged as: $\small{\frac{dy}{dx}~=~\frac{y}{y^2 - x}}$

It is not a linear form. So we rearrange in another way: $\small{\frac{dx}{dy}~=~\frac{y^2 - x}{y}}$

$\small{\Rightarrow \frac{dx}{dy}~=~y~-~\left(\frac{1}{y} \right)x}$

$\small{\Rightarrow \frac{dx}{dy}~+~\left(\frac{1}{y} \right)x~=~y}$

• Here P1 = $\small{\frac{1}{y}}$ and Q1 = $\small{y}$

• P1 and Q1 must  satisfy any one of the following three conditions:
(i) Both P1 and Q1 are constants
(ii) Both P1 and Q1 are functions of y
(iii) P1 is a constant and Q1 is a function of y

• Here, both P1 and Q1 are functions of y. So it is a first order linear differential equation.

2. Finding I.F = $\small{e^{\left(\int{\left[{\rm{P}_1} \right]dy} \right)}}$  

$\small{\begin{array}{ll}{~\color{magenta}    1    }  &{{}}    &{\int{\left[{\rm{P}_1} \right]dy}}    & {~=~}    &{\int{\left[\frac{1}{y} \right]dy}~=~\log \left|y \right|}    \\
{~\color{magenta} 2    }    &{{\Rightarrow}}    &{e^{\left(\int{\left[{\rm{P}_1} \right]dx} \right)}}    & {~=~}    &{e^{\left(\log \left|y \right| \right)} ~=~\left|y \right|}    \\
\end{array}}$

3. Write the equation with independent x:
$\small{x\left[{\rm{I.F}} \right]~=~\int{\left[{\rm{Q_1(I.F)}} \right]dy}}$

We get: $\small{x\left[y  \right]~=~\int{\left[y~\times~y \right]dy}~=~\int{\left[y^2 \right]dy}}$

4. Do the integration in the R.H.S, and add the constant of integration.

We get: $\small{\frac{y^3}{3}~+~\rm{C}}$

5. Multiply the above result in (4), by the reciprocal of the I.F

$\small{\begin{array}{ll}{~\color{magenta}    1    }  &{{}}    &{x}    & {~=~}    &{\left[\frac{y^3}{3}~+~\rm{C} \right]\frac{1}{y}}    \\
{~\color{magenta} 2    }    &{{\Rightarrow}}    &{x}    & {~=~}    &{\frac{y^2}{3}~+~\frac{{\rm{C}}}{y}}    \\
\end{array}}$

Solved example 25.72
Find the general solution of the differential equation $\boldsymbol{\left(x + 3y^2 \right)\frac{dy}{dx}~=~y~(y>0)}$.
Solution
:
1. The given differential equation is:
$\small{\left(x + 3y^2 \right)\frac{dy}{dx}~=~y~(y>0)}$

This can be rearranged as: $\small{\frac{dy}{dx}~=~\frac{y}{x + 3y^2}}$

It is not a linear form. So we rearrange in another way: $\small{\frac{dx}{dy}~=~\frac{x + 3y^2}{y}}$

$\small{\Rightarrow \frac{dx}{dy}~=~\frac{x}{y}~+~3y}$

$\small{\Rightarrow \frac{dx}{dy}~-~\left(\frac{1}{y} \right)x~=~3y}$

• Here P1 = $\small{\frac{-1}{y}}$ and Q1 = $\small{3y}$

• P1 and Q1 must  satisfy any one of the following three conditions:
(i) Both P1 and Q1 are constants
(ii) Both P1 and Q1 are functions of y
(iii) P1 is a constant and Q1 is a function of y

• Here, both P1 and Q1 are functions of y. So it is a first order linear differential equation.

2. Finding I.F = $\small{e^{\left(\int{\left[{\rm{P}_1} \right]dy} \right)}}$

$\small{\begin{array}{ll}{~\color{magenta}    1    }  &{{}}    &{\int{\left[{\rm{P}_1} \right]dy}}    & {~=~}    &{\int{\left[\frac{-1}{y} \right]dy}~=~-\log \left|y \right|~=~\log \left|y \right|^{-1}}    \\
{~\color{magenta} 2    }    &{{\Rightarrow}}    &{e^{\left(\int{\left[{\rm{P}_1} \right]dx} \right)}}    & {~=~}    &{e^{\left(\log \left|y \right| \right)} ~=~\left|y \right|^{-1}~=~\frac{1}{\left|y \right|}}    \\
\end{array}}$

3. Write the equation with independent x:
$\small{x\left[{\rm{I.F}} \right]~=~\int{\left[{\rm{Q_1(I.F)}} \right]dy}}$

We get: $\small{x\left[\frac{1}{y}  \right]~=~\int{\left[3y~\times~\frac{1}{y} \right]dy}~=~\int{\left[3 \right]dy}}$

4. Do the integration in the R.H.S, and add the constant of integration.

We get: $\small{3y~+~\rm{C}}$

5. Multiply the above result in (4), by the reciprocal of the I.F

$\small{\begin{array}{ll}{~\color{magenta}    1    }  &{{}}    &{x}    & {~=~}    &{\left[3y~+~\rm{C} \right]y}    \\
{~\color{magenta} 3    }    &{{\Rightarrow}}    &{x}    & {~=~}    &{3y^2~+~{\rm{C}}\,y}    \\
\end{array}}$

Solved example 25.73
Find the general solution of the differential equation $\boldsymbol{\left(1 + x^2 \right)dy~+~2xy\,dx~=~\cot x\,dx~~\left(x\ne0 \right)}$.
Solution
:
1. The given differential equation is:
$\small{\left(1 + x^2 \right)dy~+~2xy\,dx~=~\cot x\,dx~~\left(x\ne0 \right)}$

This can be rearranged as shown below:

$\small{\begin{array}{ll}{~\color{magenta}    1    }  &{{}}    &{\left(1 + x^2 \right)dy~+~2xy\,dx }    & {~=~}    &{\cot x\,dx}    \\
{~\color{magenta} 2    }    &{{\Rightarrow}}    &{\left(1 + x^2 \right)dy}    & {~=~}    &{\left(\cot x~-~2xy \right)\,dx}    \\
{~\color{magenta} 3    }    &{{\Rightarrow}}    &{\frac{dy}{dx}}    & {~=~}    &{\frac{\cot x~-~2xy}{1 + x^2}}    \\
{~\color{magenta} 4    }    &{{\Rightarrow}}    &{\frac{dy}{dx}~+~\left(\frac{2x}{1+x^2} \right)y}    & {~=~}    &{\frac{\cot x}{1 + x^2}}    \\
\end{array}}$

• Here P = $\small{\frac{2x}{1+x^2}}$ and Q = $\small{\frac{\cot x}{1 + x^2}}$

• P and Q must  satisfy any one of the following three conditions:
(i) Both P and Q are constants
(ii) Both P and Q are functions of x
(iii) P is a constant and Q is a function of x

• Here, both P and Q are functions of x. So it is a first order linear differential equation.

2. Finding I.F = $\small{e^{\left(\int{\left[{\rm{P}} \right]dx} \right)}}$  

$\small{\begin{array}{ll}{~\color{magenta}    1    }  &{{}}    &{\int{\left[{\rm{P}} \right]dx}}    & {~=~}    &{\int{\left[\frac{2x}{1+x^2} \right]dx}}    \\
{~\color{magenta} 2    }    &{{\Rightarrow}}    &{\int{\left[{\rm{P}} \right]dx}}    & {~=~}    &{\log\left[\left|1 + x^2 \right| \right]}    \\
{~\color{magenta} 3    }    &{{\Rightarrow}}    &{e^{\left(\int{\left[{\rm{P}} \right]dx} \right)}}    & {~=~}    &{e^{\left(\log\left[ 1 + x^2  \right] \right)}~=~1 + x^2 }    \\
\end{array}}$

3. Write the equation with independent y:
$\small{y\left[{\rm{I.F}} \right]~=~\int{\left[{\rm{Q(I.F)}} \right]dx}}$

We get: $\small{y\left[1 + x^2  \right]~=~\int{\left[\frac{\cot x}{1 + x^2}~\times~1 + x^2 \right]dx}~=~\int{\left[\cot x \right]dx}}$

4. Do the integration in the R.H.S, and add the constant of integration.

We get: $\small{\log \left(\left|\sin x \right| \right)~+~\rm{C}}$

• The reader must write all the steps involved in this integration.

5. Multiply the above result in (4), by the reciprocal of the I.F

$\small{\begin{array}{ll}{~\color{magenta}    1    }  &{{}}    &{y}    & {~=~}    &{\left[\log \left(\left|\sin x \right| \right)~+~\rm{C} \right]\frac{1}{1 + x^2}}    \\
{~\color{magenta} 2    }    &{{\Rightarrow}}    &{y}    & {~=~}    &{(1 + x^2)^{-1}\,\log \left(\left|\sin x \right| \right)~+~\rm{C}\,(1 + x^2)^{-1}}    \\
\end{array}}$

Solved example 25.74
For the differential equation $\boldsymbol{\frac{dy}{dx}~+~y\,\cot x~=~2x~+~x^2\cot x~~\left(x\ne0 \right)}$; y = 0 when x = $\small{\frac{\pi}{2}}$, find the particular solution satisfying the given conditions.
Solution
:
1. The given differential equation is:
$\small{\frac{dy}{dx}~+~y\,\cot x~=~2x~+~x^2\cot x~~\left(x\ne0 \right)}$

• Here P = $\small{\cot x}$ and Q = $\small{2x~+~x^2\cot x}$

• P and Q must  satisfy any one of the following three conditions:
(i) Both P and Q are constants
(ii) Both P and Q are functions of x
(iii) P is a constant and Q is a function of x

• Here, both P and Q are functions of x. So it is a first order linear differential equation.

2. Finding I.F = $\small{e^{\left(\int{\left[{\rm{P}} \right]dx} \right)}}$  

$\small{\begin{array}{ll}{~\color{magenta}    1    }  &{{}}    &{\int{\left[{\rm{P}} \right]dx}}    & {~=~}    &{\int{\left[\cot x \right]dx}}    \\
{~\color{magenta} 2    }    &{{\Rightarrow}}    &{\int{\left[{\rm{P}} \right]dx}}    & {~=~}    &{\log\left[\left|\sin x \right| \right]}    \\
{~\color{magenta} 3    }    &{{\Rightarrow}}    &{e^{\left(\int{\left[{\rm{P}} \right]dx} \right)}}    & {~=~}    &{e^{\left(\log\left[\sin x  \right] \right)}~=~\sin x }    \\
\end{array}}$

3. Write the equation with independent y:
$\small{y\left[{\rm{I.F}} \right]~=~\int{\left[{\rm{Q(I.F)}} \right]dx}}$

We get: $\small{y\left[\sin x \right]~=~\int{\left[\left(2x~+~x^2\cot x \right)~\times~\sin x \right]dx}}$

$\small{\Rightarrow y\left[\sin x \right]~=~\int{\left[2x \sin x~+~x^2\,\cos x \right]dx}}$

4. Do the integration in the R.H.S, and add the constant of integration.

We get: $\small{2\left(\sin x~-~x\,\cos x \right)~+~\left(x^{2} - 2\right) \sin\left(x\right) + 2x \cos\left(x\right)~+~\rm{C}}$

$\small{\Rightarrow 2 \sin x - 2x \,\cos x+ x^2 \sin x - 2 \sin x + 2x \cos x~+~\rm{C}}$

$\small{\Rightarrow  x^2 \sin x ~+~\rm{C}}$

• The reader must write all the steps involved in this integration.

5. Multiply the above result in (4), by the reciprocal of the I.F

$\small{\begin{array}{ll}{~\color{magenta}    1    }  &{{}}    &{y}    & {~=~}    &{\left[x^2 \sin x~+~\rm{C} \right]\frac{1}{\sin x}}    \\
{~\color{magenta} 2    }    &{{\Rightarrow}}    &{y \sin x}    & {~=~}    &{x^2 \sin x~+~\rm{C}}    \\
\end{array}}$

6. Now we can find the particular solution.
• Given that: y = 0 when x = $\small{\frac{\pi}{2}}$
• Substituting in the general solution, we get:

$\small{\begin{array}{ll}{~\color{magenta}    1    }  &{{}}    &{y \sin x}    & {~=~}    &{x^2 \sin x~+~\rm{C}}    \\
{~\color{magenta} 2    }    &{{\Rightarrow}}    &{0}    & {~=~}    &{\left(\frac{\pi^2}{4} \right)\sin \left(\frac{\pi}{2} \right)~+~\rm{C}}    \\
{~\color{magenta} 3    }    &{{\Rightarrow}}    &{0}    & {~=~}    &{\left(\frac{\pi^2}{4} \right) \left(1 \right)~+~\rm{C}}    \\
{~\color{magenta} 4    }    &{{\Rightarrow}}    &{\rm{C}}    & {~=~}    &{(-1)\frac{\pi^2}{4}}    \\
\end{array}}$

• So the particular solution is:

$\small{y \sin x ~=~x^2\,\sin x~-~\frac{\pi^2}{4}}$

Solved example 25.75
For the differential equation $\boldsymbol{\frac{dy}{dx}~+~y\,\cot x~=~4x\,\csc x~~\left(x\ne0 \right)}$; y = 0 when x = $\small{\frac{\pi}{2}}$, find the particular solution satisfying the given conditions.
Solution
:
1. The given differential equation is:
$\small{\frac{dy}{dx}~+~y\,\cot x~=~4x\,\csc x~~\left(x\ne0 \right)}$

• Here P = $\small{\cot x}$ and Q = $\small{4x\,\csc x}$

• P and Q must  satisfy any one of the following three conditions:
(i) Both P and Q are constants
(ii) Both P and Q are functions of x
(iii) P is a constant and Q is a function of x

• Here, both P and Q are functions of x. So it is a first order linear differential equation.

2. Finding I.F = $\small{e^{\left(\int{\left[{\rm{P}} \right]dx} \right)}}$  

$\small{\begin{array}{ll}{~\color{magenta}    1    }  &{{}}    &{\int{\left[{\rm{P}} \right]dx}}    & {~=~}    &{\int{\left[\cot x \right]dx}}    \\
{~\color{magenta} 2    }    &{{\Rightarrow}}    &{\int{\left[{\rm{P}} \right]dx}}    & {~=~}    &{\log\left[\left|\sin x \right| \right]}    \\
{~\color{magenta} 3    }    &{{\Rightarrow}}    &{e^{\left(\int{\left[{\rm{P}} \right]dx} \right)}}    & {~=~}    &{e^{\left(\log\left[\sin x  \right] \right)}~=~\sin x }    \\
\end{array}}$

3. Write the equation with independent y:
$\small{y\left[{\rm{I.F}} \right]~=~\int{\left[{\rm{Q(I.F)}} \right]dx}}$

We get: $\small{y\left[\sin x \right]~=~\int{\left[\left(4x\,\csc x \right)~\times~\sin x \right]dx}}$

$\small{\Rightarrow y\left[\sin x \right]~=~\int{\left[4x \right]dx}}$

4. Do the integration in the R.H.S, and add the constant of integration.

We get: $\small{2x^2~+~\rm{C}}$

• The reader must write all the steps involved in this integration.

5. Multiply the above result in (4), by the reciprocal of the I.F

$\small{\begin{array}{ll}{~\color{magenta}    1    }  &{{}}    &{y}    & {~=~}    &{\left[2x^2~+~\rm{C} \right]\frac{1}{\sin x}}    \\
{~\color{magenta} 2    }    &{{\Rightarrow}}    &{y \sin x}    & {~=~}    &{2x^2~+~\rm{C}}    \\
\end{array}}$

6. Now we can find the particular solution.
• Given that: y = 0 when x = $\small{\frac{\pi}{2}}$
• Substituting in the general solution, we get:

$\small{\begin{array}{ll}{~\color{magenta}    1    }  &{{}}    &{y \sin x}    & {~=~}    &{2x^2~+~\rm{C}}    \\
{~\color{magenta} 2    }    &{{\Rightarrow}}    &{0}    & {~=~}    &{2\left(\frac{\pi^2}{4} \right)~+~\rm{C}}    \\
{~\color{magenta} 3    }    &{{\Rightarrow}}    &{\rm{C}}    & {~=~}    &{(-1)\frac{\pi^2}{2}}    \\
\end{array}}$

• So the particular solution is:

$\small{y \sin x ~=~2x^2~-~\frac{\pi^2}{2}}$

Solved example 25.76
Find the general solution of the differential equation $\boldsymbol{\left[\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}~-~\frac{y}{\sqrt{x}} \right]\frac{dx}{dy}~=~1~~\left(x\ne0 \right)}$.
Solution
:
1. The given differential equation is:
$\small{\left[\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}~-~\frac{y}{\sqrt{x}} \right]\frac{dx}{dy}~=~1~~\left(x\ne0 \right)}$

This can be rearranged as shown below:

$\small{\begin{array}{ll}{~\color{magenta}    1    }  &{{}}    &{\frac{dy}{dx}}    & {~=~}    &{\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}~-~\frac{y}{\sqrt{x}}}    \\
{~\color{magenta} 2    }    &{{\Rightarrow}}    &{\frac{dy}{dx}~+~\frac{y}{\sqrt{x}}}    & {~=~}    &{\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}}    \\
{~\color{magenta} 3    }    &{{\Rightarrow}}    &{\frac{dy}{dx}~+~\left(\frac{1}{\sqrt{x}} \right)y}    & {~=~}    &{\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}}    \\
\end{array}}$

• Here P = $\small{\frac{1}{\sqrt{x}}}$ and Q = $\small{\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}}$

• P and Q must  satisfy any one of the following three conditions:
(i) Both P and Q are constants
(ii) Both P and Q are functions of x
(iii) P is a constant and Q is a function of x

• Here, both P and Q are functions of x. So it is a first order linear differential equation.

2. Finding I.F = $\small{e^{\left(\int{\left[{\rm{P}} \right]dx} \right)}}$  

$\small{\begin{array}{ll}{~\color{magenta}    1    }  &{{}}    &{\int{\left[{\rm{P}} \right]dx}}    & {~=~}    &{\int{\left[\frac{1}{\sqrt{x}} \right]dx}}    \\
{~\color{magenta} 2    }    &{{\Rightarrow}}    &{\int{\left[{\rm{P}} \right]dx}}    & {~=~}    &{2 \sqrt{x}}    \\
{~\color{magenta} 3    }    &{{\Rightarrow}}    &{e^{\left(\int{\left[{\rm{P}} \right]dx} \right)}}    & {~=~}    &{e^{\left(2 \sqrt{x} \right)} }    \\
\end{array}}$

3. Write the equation with independent y:
$\small{y\left[{\rm{I.F}} \right]~=~\int{\left[{\rm{Q(I.F)}} \right]dx}}$

We get: $\small{y\left[e^{\left(2 \sqrt{x} \right)}  \right]~=~\int{\left[\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}~\times~e^{\left(2 \sqrt{x} \right)} \right]dx}~=~\int{\left[\frac{1}{\sqrt{x}} \right]dx}}$

4. Do the integration in the R.H.S, and add the constant of integration.

We get: $\small{2 \sqrt{x}~+~\rm{C}}$

• The reader must write all the steps involved in this integration.

5. Multiply the above result in (4), by the reciprocal of the I.F

$\small{\begin{array}{ll}{~\color{magenta}    1    }  &{{}}    &{y}    & {~=~}    &{\left[2 \sqrt{x}~+~\rm{C} \right]e^{\left(-2 \sqrt{x} \right)}}    \\
{~\color{magenta} 2    }    &{{\Rightarrow}}    &{y\,e^{\left(2 \sqrt{x} \right)}}    & {~=~}    &{2 \sqrt{x}~+~\rm{C}}    \\
\end{array}}$

Solved example 25.77
Find the equation of a curve passing through the point (0,1). If the slope of the tangent to the curve at any point (x,y) is equal to the sum of the x coordinate (abscissa) and the product of the x coordinate and y coordinate of that point.
Solution
:
1. The slope of the tangent to the curve at any point (x,y) is $\small{\frac{dy}{dx}}$.
• Given that: This slope is equal to the sum of the x coordinate (abscissa) and the product of the x coordinate and y coordinate of that point.
• So we can write: $\small{\frac{dy}{dx}~=~x + xy}$
• This is the differential equation that we need to solve.

This can be rearranged as shown below:

$\small{\frac{dy}{dx}~-~(x)y~=~x}$

• Here P = $\small{-x}$ and Q = $\small{x}$

• P and Q must  satisfy any one of the following three conditions:
(i) Both P and Q are constants
(ii) Both P and Q are functions of x
(iii) P is a constant and Q is a function of x

• Here, both P and Q are functions of x. So it is a first order linear differential equation.

2. Finding I.F = $\small{e^{\left(\int{\left[{\rm{P}} \right]dx} \right)}}$  

$\small{\begin{array}{ll}{~\color{magenta}    1    }  &{{}}    &{\int{\left[{\rm{P}} \right]dx}}    & {~=~}    &{\int{\left[-x \right]dx}}    \\
{~\color{magenta} 2    }    &{{\Rightarrow}}    &{\int{\left[{\rm{P}} \right]dx}}    & {~=~}    &{(-1)\frac{x^2}{2}}    \\
{~\color{magenta} 3    }    &{{\Rightarrow}}    &{e^{\left(\int{\left[{\rm{P}} \right]dx} \right)}}    & {~=~}    &{e^{\left(\frac{-x^2}{2} \right)} }    \\
\end{array}}$

3. Write the equation with independent y:
$\small{y\left[{\rm{I.F}} \right]~=~\int{\left[{\rm{Q(I.F)}} \right]dx}}$

We get: $\small{y\left[e^{\left(\frac{-x^2}{2} \right)}  \right]~=~\int{\left[x~\times~e^{\left(\frac{-x^2}{2} \right)} \right]dx}}$

4. Do the integration in the R.H.S, and add the constant of integration.

We get: $\small{-e^{\left(\frac{-x^2}{2} \right)}~+~\rm{C}}$

• The reader must write all the steps involved in this integration.

5. Multiply the above result in (4), by the reciprocal of the I.F

$\small{\begin{array}{ll}{~\color{magenta}    1    }  &{{}}    &{y}    & {~=~}    &{\left[-e^{\left(\frac{-x^2}{2} \right)}~+~\rm{C} \right]\frac{1}{e^{\left(\frac{-x^2}{2} \right)}}}    \\
{~\color{magenta} 2    }    &{{\Rightarrow}}    &{y}    & {~=~}    &{\left[-e^{\left(\frac{-x^2}{2} \right)}~+~\rm{C} \right]e^{\left(\frac{x^2}{2} \right)}}    \\
{~\color{magenta} 3    }    &{{\Rightarrow}}    &{y}    & {~=~}    &{-1~+~{\rm{C}}\,e^{\left(\frac{x^2}{2} \right)} }    \\
\end{array}}$

6. Now we can find the particular solution.
• Given that: y = 1 when x = 0 because, the curve passes through (0,1)
• Substituting in the general solution, we get:

$\small{\begin{array}{ll}{~\color{magenta}    1    }  &{{}}    &{y}    & {~=~}    &{-1~+~{\rm{C}}\,e^{\left(\frac{x^2}{2} \right)}}    \\
{~\color{magenta} 2    }    &{{\Rightarrow}}    &{1}    & {~=~}    &{-1~+~{\rm{C}}\,e^{\left(\frac{0^2}{2} \right)}}    \\
{~\color{magenta} 3    }    &{{\Rightarrow}}    &{2}    & {~=~}    &{\rm{C}}    \\
\end{array}}$

• So the particular solution is:

$\small{y ~=~-1~+~{2}\,e^{\left(\frac{x^2}{2} \right)}}$

• This is the equation of the required curve.


The link below gives a few more solved examples:

Exercise 9.5


In the next section, we will see linear differential equations.

Previous

Contents

Next 

Copyright©2025 Higher secondary mathematics.blogspot.com

No comments:

Post a Comment