Sunday, October 12, 2025

25.6 - Solved Examples on Variables Separable

In the previous section, we saw how to solve first order first degree differential equations with variables separable. We saw some solved examples also. In this section, we will see a few more solved examples.

Solved example 25.36
Find the particular solution of the differential equation $\cos\left(\frac{dy}{dx} \right)~=~a~~(a \in R)$ given that y = 2 when x = 0.
Solution
:
1. The variables can be separated and the differential equation can be rewritten:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{\cos\left(\frac{dy}{dx} \right)}    & {~=~}    &{a~~(a \in R)}    \\
{~\color{magenta}    2    }    &{{\Rightarrow}}    &{\frac{dy}{dx}}    & {~=~}    &{\cos^{-1}a}    \\
{~\color{magenta}    3    }    &{{\Rightarrow}}    &{dy}    & {~=~}    &{\cos^{-1}a\,dx}    \\
\end{array}}$

2. Integrating both sides, we get:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{\int{\left[1\right]dy}}    & {~=~}    &{\int{\left[\cos^{-1}a \right]dx}}    \\
{~\color{magenta}    2    }    &{{\Rightarrow}}    &{y~+~\rm{C}_1}    & {~=~}    &{x~\cos^{-1}a~+~\rm{C}_2}    \\
{~\color{magenta}    3    }    &{{\Rightarrow}}&{y}    & {~=~}    &{x~\cos^{-1}a~+~\rm{C}}    \\
\end{array}}$

3. So the general solution is:
$\small{y~=~x~\cos^{-1}a~+~\rm{C}}$

4. The constant C can take infinite number of values. So there are infinite number of solutions possible.
• We want that particular solution in which y becomes 2 when x = 0

• So substituting x = 0 and y = 2 in the general solution, we get:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{2}    & {~=~}    &{(0)~\cos^{-1}a~+~\rm{C}}    \\
{~\color{magenta}    2    }    &{{\Rightarrow}}    &{2}    & {~=~}    &{0~+~\rm{C}}    \\
{~\color{magenta}    3    }    &{{\Rightarrow}}    &{2}    & {~=~}    &{\rm{C}}    \\
\end{array}}$

5. So the particular solution is:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{y}    & {~=~}    &{x~\cos^{-1}a~+~2}    \\
{~\color{magenta}    2    }    &{{\Rightarrow}}    &{x~\cos^{-1}a}    & {~=~}    &{y~-~2}    \\
{~\color{magenta}    3    }    &{{\Rightarrow}}    &{\cos^{-1}a}    & {~=~}    &{\frac{y-2}{x}}    \\
{~\color{magenta}    4    }    &{{\Rightarrow}}    &{\cos\left(\frac{y-2}{x} \right)}    & {~=~}    &{a}    \\
\end{array}}$ 

Solved example 25.37
Find the equation of the curve passing through the point (1,1) whose differential equation is $x dy~=~(2x^2 + 1) dx~(x \ne 0)$.
Solution
:
1. The variables can be separated and the differential equation can be rewritten:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{dy}    & {~=~}    &{\left[\frac{2x^2 + 1}{x} \right]dx}    \\
{~\color{magenta}    2    }    &{{\Rightarrow}}    &{dy}    & {~=~}    &{\left[2x + \frac{1}{x} \right] dx}    \\
\end{array}}$

2. Integrating both sides, we get:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{\int{\left[1\right]dy}}    & {~=~}    &{\int{\left[2x + \frac{1}{x} \right]dx}}    \\
{~\color{magenta}    2    }    &{{\Rightarrow}}    &{y~+~\rm{C}_1}    & {~=~}    &{x^2~+~\log \left|x \right|~+~\rm{C}_2}    \\
{~\color{magenta}    3    }    &{{\Rightarrow}}    &{y}    & {~=~}    &{x^2~+~\log \left|x \right|~+~\rm{C}_2~-~\rm{C}_1}    \\
{~\color{magenta}    4    }    &{{\Rightarrow}}    &{y}    & {~=~}    &{x^2~+~\log \left|x \right|~+~\rm{C}}    \\
\end{array}}$

3. So the general solution is:
$\small{y~=~x^2~+~\log \left|x \right|~+~\rm{C}}$

4. The constant C can take infinite number of values. So there are infinite number of solutions possible.
• We want that particular solution in which y becomes 1 when x = 1

• So substituting x = 1 and y = 1 in the general solution, we get:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{y}    & {~=~}    &{x^2~+~\log \left|x \right|~+~\rm{C}}    \\
{~\color{magenta}    2    }    &{{\Rightarrow}}        &{1}    & {~=~}    &{(1)^2~+~\log \left|1 \right|~+~\rm{C}}    \\
{~\color{magenta}    3    }    &{{\Rightarrow}}        &{1}    & {~=~}    &{1~+~0~+~\rm{C}}    \\
{~\color{magenta}    4    }    &{{\Rightarrow}}        &{\rm{C}}    & {~=~}    &{0}    \\
\end{array}}$

5. So the particular solution is:

$\small{y~=~x^2~+~\log \left|x \right|}$

6. The red curve in fig.25.19 below is the graph of this particular solution. Note that, the point (1,1) falls on the red curve only.

Fig.25.19

    ♦ For the yellow curve, C = 2  
    ♦ For the red curve, C = 0
    ♦ For the green curve, C = -0.5

Solved example 25.38
Find the equation of the curve passing through the point (0,0) and whose differential equation is $y'~=~e^x\,\sin x$.
Solution
:
1. The variables can be separated and the differential equation can be rewritten:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{y'}    & {~=~}    &{e^x\,\sin x}    \\
{~\color{magenta}    2    }    &{{\Rightarrow}}    &{\frac{dy}{dx}}    & {~=~}    &{e^x\,\sin x}    \\
{~\color{magenta}    3    }    &{{\Rightarrow}}    &{dy}    & {~=~}    &{\left[e^x\,\sin x \right]dx}    \\
\end{array}}$

2. Integrating both sides, we get:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{\int{\left[1\right]dy}}    & {~=~}    &{\int{\left[e^x\,\sin x \right]dx}}    \\
{~\color{magenta}    2    }    &{{\Rightarrow}}    &{y~+~\rm{C}_1}    & {~=~}    &{\frac{1}{2}e^x (\sin x ~-~\cos x)~+~\rm{C}_2}    \\
{~\color{magenta}    3    }    &{{\Rightarrow}}&{y}    & {~=~}    &{\frac{1}{2}e^x (\sin x ~-~\cos x)~+~\rm{C}}    \\
{~\color{magenta}    4    }    &{{\Rightarrow}}    &{y}    & {~=~}    &{x^2~+~\log \left|x \right|~+~\rm{C}}    \\
\end{array}}$

3. So the general solution is:
$\small{y~=~\frac{1}{2}e^x (\sin x ~-~\cos x)~+~\rm{C}}$

4. The constant C can take infinite number of values. So there are infinite number of solutions possible.
• We want that particular solution in which y becomes zero when x = zero

• So substituting x = 0 and y = 0 in the general solution, we get:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{y}    & {~=~}    &{\frac{1}{2}e^x (\sin x ~-~\cos x)~+~\rm{C}}    \\
{~\color{magenta}    2    }    &{{\Rightarrow}}        &{0}    & {~=~}    &{\frac{1}{2}e^0 (\sin 0 ~-~\cos 0)~+~\rm{C}}    \\
{~\color{magenta}    3    }    &{{\Rightarrow}}        &{0}    & {~=~}    &{\frac{1}{2}(1) (0 ~-~1)~+~\rm{C}}    \\
{~\color{magenta}    4    }    &{{\Rightarrow}}        &{0}    & {~=~}    &{\frac{1}{2}(1) (-1)~+~\rm{C}}    \\
{~\color{magenta}    5    }    &{{\Rightarrow}}        &{\rm{C}}    & {~=~}    &{\frac{1}{2}}    \\
\end{array}}$

5. So the particular solution is:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{y}    & {~=~}    &{\frac{1}{2}e^x (\sin x ~-~\cos x)~+~\frac{1}{2}}    \\
{~\color{magenta}    2    }    &{{\Rightarrow}}        &{2y}    & {~=~}    &{e^x (\sin x ~-~\cos x)~+~1}    \\
{~\color{magenta}    3    }    &{{\Rightarrow}}        &{2y~-~1}    & {~=~}    &{e^x (\sin x ~-~\cos x)}    \\
\end{array}}$

Solved example 25.39
For the differential equation $xy \frac{dy}{dx}~=~(x+2)(y+2)$, find the solution curve passing through the point (1,−1).
Solution
:
1. The variables can be separated and the differential equation can be rewritten:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{xy\frac{dy}{dx}}    & {~=~}    &{(x+2)(y+2)}    \\
{~\color{magenta}    2    }    &{{\Rightarrow}}    &{\frac{y}{y+2}\,dy}    & {~=~}    &{\frac{x+2}{x}\,dx}    \\
\end{array}}$

2. Integrating both sides, we get:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{\int{\left[\frac{y}{y+2}\right]dy}}    & {~=~}    &{\int{\left[\frac{x+2}{x} \right]dx}}    \\
{~\color{magenta}    2    }    &{{\Rightarrow}}    &{y~-~2\log \left|y+2 \right|~+~\rm{C}_1}    & {~=~}    &{x~+~2\log \left|x \right|~+~\rm{C}_2}    \\
{~\color{magenta}    3    }    &{{\Rightarrow}}&{x~-~y~+~2\log \left|y+2 \right|~+~\log \left|x \right|}    & {~=~}    &{\rm{C}_1~-~\rm{C}_2}    \\
{~\color{magenta}    4    }    &{{\Rightarrow}}&{x~-~y~+~\log \left(y+2 \right)^2~+~\log \left(x \right)^2}    & {~=~}    &{\rm{C}}    \\
{~\color{magenta}    5    }    &{{\Rightarrow}}&{x~-~y~+~\log \left[\left(y+2 \right)^2 \,\left(x \right)^2\right]}    & {~=~}    &{\rm{C}}    \\
\end{array}}$

3. So the general solution is:
$\small{x~-~y~+~\log \left[\left(y+2 \right)^2 \,\left(x \right)^2\right]~=~\rm{C}}$

4. The constant C can take infinite number of values. So there are infinite number of solutions possible.
• We want that particular solution in which y becomes −1 when x = 1

• So substituting x = 1 and y = −1 in the general solution, we get:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{x~-~y~+~\log \left[\left(y+2 \right)^2 \,\left(x \right)^2\right]}    & {~=~}    &{\rm{C}}    \\
{~\color{magenta}    2    }    &{{\Rightarrow}}        &{1~-~(-1)~+~\log \left[\left(-1+2 \right)^2 \,\left(1 \right)^2\right]}    & {~=~}    &{\rm{C}}    \\
{~\color{magenta}    3    }    &{{\Rightarrow}}        &{2~+~\log \left[\left(1 \right)^2 \,\left(1 \right)^2\right]}    & {~=~}    &{\rm{C}}    \\
{~\color{magenta}    4    }    &{{\Rightarrow}}        &{2~+~\log \left[1\right]}    & {~=~}    &{\rm{C}}    \\
{~\color{magenta}    5    }    &{{\Rightarrow}}        &{2~+~0}    & {~=~}    &{\rm{C}}    \\
{~\color{magenta}    6    }    &{{\Rightarrow}}        &{\rm{C}}    & {~=~}    &{2}    \\
\end{array}}$

5. So the particular solution is:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{x~-~y~+~\log \left[\left(y+2 \right)^2 \,\left(x \right)^2\right]}    & {~=~}    &{2}    \\
{~\color{magenta}    2    }    &{{\Rightarrow}}        &{y-x+2}    & {~=~}    &{\log \left[\left(y+2 \right)^2 \,\left(x \right)^2\right]}    \\
\end{array}}$

Solved example 25.40
Find the equation of a curve passing through the point (−2,3), given that the slope of the tangent to the curve at any point (x,y) is $\frac{2x}{y^2}$.
Solution
:
1. We know that, slope of the tangent is same as the derivative. So we can write the differential equation:
$\frac{dy}{dx}~=~\frac{2x}{y^2}$
• The variables can be separated and the differential equation can be rewritten:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{\frac{dy}{dx}}    & {~=~}    &{\frac{2x}{y^2}}    \\
{~\color{magenta}    2    }    &{{\Rightarrow}}    &{y^2\,dy}    & {~=~}    &{2x\,dx}    \\
\end{array}}$

2. Integrating both sides, we get:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{\int{\left[y^2\right]dy}}    & {~=~}    &{\int{\left[2x \right]dx}}    \\
{~\color{magenta}    2    }    &{{\Rightarrow}}    &{\frac{y^3}{3}~+~\rm{C}_1}    & {~=~}    &{x^2~+~\rm{C}_2}    \\
{~\color{magenta}    3    }    &{{\Rightarrow}}&{x^2~-~\frac{y^3}{3}}    & {~=~}    &{\rm{C}_1~-~\rm{C}_2}    \\
{~\color{magenta}    4    }    &{{\Rightarrow}}&{x^2~-~\frac{y^3}{3}}    & {~=~}    &{\rm{C}}    \\
\end{array}}$

3. So the general solution is:
$\small{x^2~-~\frac{y^3}{3}~=~\rm{C}}$

4. The constant C can take infinite number of values. So there are infinite number of solutions possible.
• We want that particular solution in which y becomes 3 when x = −2

• So substituting x = −2 and y = 3 in the general solution, we get:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{x^2~-~\frac{y^3}{3}}    & {~=~}    &{\rm{C}}    \\
{~\color{magenta}    2    }    &{{\Rightarrow}}        &{(-2)^2~-~\frac{(3)^3}{3}}    & {~=~}    &{\rm{C}}    \\
{~\color{magenta}    3    }    &{{\Rightarrow}}        &{4~-~9}    & {~=~}    &{\rm{C}}    \\
{~\color{magenta}    4    }    &{{\Rightarrow}}        &{\rm{C}}    & {~=~}    &{-5}    \\
\end{array}}$

5. So the particular solution is:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{x^2~-~\frac{y^3}{3}}    & {~=~}    &{-5}    \\
{~\color{magenta}    2    }    &{{\Rightarrow}}        &{\frac{y^3}{3}}    & {~=~}    &{x^2~+~5}    \\
{~\color{magenta}    3    }    &{{\Rightarrow}}        &{y^3}    & {~=~}    &{3x^2~+~15}    \\
{~\color{magenta}    4    }    &{{\Rightarrow}}        &{y}    & {~=~}    &{\left(3x^2~+~15 \right)^{\frac{1}{3}}}    \\
\end{array}}$

Solved example 25.41
Find the equation of a curve passing through the point (0,−2), given that at any point (x,y) on the curve, the product of the slope of it's tangent and y-coordinate of the point is equal to the x-coordinate of the point.
Solution
:
1. We know that, slope of the tangent is same as the derivative. So we can write the differential equation:
$y\,\frac{dy}{dx}~=~x$
• The variables can be separated and the differential equation can be rewritten:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{y\,\frac{dy}{dx}}    & {~=~}    &{x}    \\
{~\color{magenta}    2    }    &{{\Rightarrow}}    &{y\,dy}    & {~=~}    &{x\,dx}    \\
\end{array}}$

2. Integrating both sides, we get:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{\int{\left[y\right]dy}}    & {~=~}    &{\int{\left[x \right]dx}}    \\
{~\color{magenta}    2    }    &{{\Rightarrow}}    &{\frac{y^2}{2}~+~\rm{C}_1}    & {~=~}    &{\frac{x^2}{2}~+~\rm{C}_2}    \\
{~\color{magenta}    3    }    &{{\Rightarrow}}&{\frac{x^2}{2}~-~\frac{y^2}{2}}    & {~=~}    &{\rm{C}_1~-~\rm{C}_2}    \\
{~\color{magenta}    4    }    &{{\Rightarrow}}&{x^2~-~y^2}    & {~=~}    &{2\rm{C}_1~-~2\rm{C}_2}    \\
{~\color{magenta}    5    }    &{{\Rightarrow}}&{x^2~-~y^2}    & {~=~}    &{\rm{C}}    \\
\end{array}}$

3. So the general solution is:
$\small{x^2~-~y^2~=~\rm{C}}$

4. The constant C can take infinite number of values. So there are infinite number of solutions possible.
• We want that particular solution in which y becomes −2 when x = 0

• So substituting x = 0 and y = −2 in the general solution, we get:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{x^2~-~y^2}    & {~=~}    &{\rm{C}}    \\
{~\color{magenta}    2    }    &{{\Rightarrow}}        &{(0)^2~-~(-2)^2}    & {~=~}    &{\rm{C}}    \\
{~\color{magenta}    3    }    &{{\Rightarrow}}        &{0~-~4}    & {~=~}    &{\rm{C}}    \\
{~\color{magenta}    4    }    &{{\Rightarrow}}        &{\rm{C}}    & {~=~}    &{-4}    \\
\end{array}}$

5. So the particular solution is:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{x^2~-~y^2}    & {~=~}    &{-4}    \\
{~\color{magenta}    2    }    &{{\Rightarrow}}        &{y^2~-~x^2}    & {~=~}    &{4}    \\
\end{array}}$


The link below gives a few more solved examples:

Exercise 9.4


In the next section, we will see homogeneous differential equations.

Previous

Contents

Next 

Copyright©2025 Higher secondary mathematics.blogspot.com

No comments:

Post a Comment