In the previous section, we saw evaluation of definite integrals by substitution. We saw some solved examples also. In this section, we will see some properties of definite integrals.
$\bf{{\rm{P_0}}:\int_a^b{\left[f(x) \right]dx}~=~\int_a^b{\left[f(t) \right]dt}}$
Proof:
The function is the same. Upper and lower limits are also the same. We are changing only the variable. So the definite integral will be the same.
$\bf{{\rm{P_1}}:\int_a^b{\left[f(x) \right]dx}~=~-\int_b^a{\left[f(x) \right]dx}}$
Proof can be written in 4 steps:
1. $\small{\int_a^b{\left[f(x) \right]dx}~=~F(b)\,-\,F(a)}$
2. $\small{\int_b^a{\left[f(x) \right]dx}~=~F(a)\,-\,F(b)~=~-\left[F(b)\,-\,F(a) \right]}$
3. From (2), we get:
$\small{-\int_b^a{\left[f(x) \right]dx}~=~F(b)\,-\,F(a) }$
4. Comparing the results in (1) and (3), we get:
$\small{\int_a^b{\left[f(x) \right]dx}~=~-\int_b^a{\left[f(t) \right]dx}}$
5. Note that:
$\small{\int_a^a{\left[f(x) \right]dx}~=~F(a)\,-\,F(a)~=~0}$
$\bf{{\rm{P_2}}:\int_a^b{\left[f(x) \right]dx}~=~\int_a^c{\left[f(x) \right]dx}~+~\int_c^b{\left[f(x) \right]dx}}$
Proof can be written in 3 steps:
1. $\small{\int_a^c{\left[f(x) \right]dx}~=~F(c)\,-\,F(a)}$
2. $\small{\int_c^b{\left[f(x) \right]dx}~=~F(b)\,-\,F(c)}$
3. Therefore:
$\small{\int_a^c{\left[f(x) \right]dx}~+~\int_c^b{\left[f(x) \right]dx}}$
$\small{~=~F(c)\,-\,F(a)~+~F(b)\,-\,F(c)}$
$\small{~=~F(b)\,-\,F(a)}$
$\small{~=~\int_a^b{\left[f(x) \right]dx}}$
$\bf{{\rm{P_3}}:\int_a^b{\left[f(x) \right]dx}~=~\int_a^b{\left[f(a+b-x) \right]dx}}$
Proof can be written in 3 steps:
1. Put $\small{t=a+b-x}$
$\small{\implies \frac{dt}{dx}~=~-1}$
$\small{\implies -dx~=~dt}$
2. Rearranging the limits:
♦ When x approach the lower limit 'a', t approach 'b'
♦ When x approach the upper limit 'b', t approach 'c'
3. So we can write:
$\small{\int_a^b{\left[f(a+b-x) \right]dx}~=~\int_a^b{\left[(-1)(-1)f(a+b-x) \right]dx}}$
$\small{~=~\int_b^a{\left[(-1)\,f(t) \right]dt}~=~(-1)\int_b^a{\left[\,f(t) \right]dt}}$
$\small{~=~\int_a^b{\left[\,f(t) \right]dt}}$ (by P1)
$\small{~=~\int_a^b{\left[\,f(x) \right]dx}}$ (by P0q)
$\bf{{\rm{P_4}}:\int_0^a{\left[f(x) \right]dx}~=~\int_0^a{\left[f(a-x) \right]dx}}$
Proof can be written in 4 steps:
1. Put $\small{t=a-x}$
$\small{\implies \frac{dt}{dx}~=~-1}$
$\small{\implies -dx~=~dt}$
2. Rearranging the limits:
♦ When x approach the lower limit zero, t approach 'a'
♦ When x approach the upper limit 'a', t approach zero
3. So we can write:
$\small{\int_a^b{\left[f(a-x) \right]dx}~=~\int_a^b{\left[(-1)(-1)f(a-x) \right]dx}}$
$\small{~=~\int_a^0{\left[(-1)\,f(t) \right]dt}~=~(-1)\int_a^0{\left[\,f(t) \right]dt}}$
$\small{~=~\int_0^a{\left[\,f(t) \right]dt}}$ (by P1)
$\small{~=~\int_0^a {\left[\,f(x) \right]dx}}$ (by P0q)
4. Note that, P4 is a particular case of P3.
$\bf{{\rm{P_5}}:\int_0^{2a}{\left[f(x) \right]dx}~=~\int_0^a{\left[f(x) \right]dx}~+~\int_0^a{\left[f(2a-x) \right]dx}}$
Proof can be written in 4 steps:
1. Using P2, we can write:
$\small{\int_0^{2a}{\left[f(x) \right]dx}~=~\int_0^a{\left[f(x) \right]dx}~+~\int_a^{2a}{\left[f(x) \right]dx}}$
• We can denote this as:
$\small{\int_0^{2a}{\left[f(x) \right]dx}~=~I_1~+~I_2}$
2. Put $\small{t=2a-x}$
$\small{\implies \frac{dt}{dx}~=~-1}$
$\small{\implies -dx~=~dt}$
Also, $\small{x = 2a - t}$
3. Rearranging the limits of I2:
♦ When x approach the lower limit 'a', t approach 'a'
♦ When x approach the upper limit '2a', t approach zero
So I2 can be written as:
$\small{\int_a^{2a}{\left[f(x) \right]dx}~=~\int_a^0{\left[f(2a-t) \right]dx}~=~\int_a^0{\left[(-1)(-1)f(2a-t) \right]dx}}$
$\small{~=~\int_a^0{\left[(-1)\,f(2a - t) \right]dt}~=~(-1)\int_a^0{\left[\,f(2a - t) \right]dt}}$
$\small{~=~\int_0^a{\left[\,f(2a - t) \right]dt}}$ (by P1)
$\small{~=~\int_0^a {\left[\,f(2a - x) \right]dx}}$ (by P0q)
4. So from step (1), we get:
$\small{\int_0^{2a}{\left[f(x) \right]dx}~=~\int_0^a{\left[f(x) \right]dx}~+~\int_0^a {\left[\,f(2a - x) \right]dx}}$
$\bf{{\rm{P_6}}:}$
$\bf{\int_0^{2a}{\left[f(x) \right]dx}~=~2 \int_0^a{\left[f(x) \right]dx}}$
♦ If $\small{f(2a - x)~=~f(x)}$
$\bf{\int_0^{2a}{\left[f(x) \right]dx}~=~0}$
♦ If $\small{f(2a - x)~=~-f(x)}$
Proof can be written in 3 steps:
1. Using P5, we can write:
$\small{\int_0^{2a}{\left[f(x) \right]dx}~=~\int_0^a{\left[f(x) \right]dx}~+~\int_0^a {\left[\,f(2a - x) \right]dx}}$
2. If $\small{f(2a-x)~=~f(x)}$, (1) becomes:
$\small{\int_0^{2a}{\left[f(x) \right]dx}~=~\int_0^a{\left[f(x) \right]dx}~+~\int_0^a{\left[f(x) \right]dx}~=~2\int_0^a{\left[f(x) \right]dx}}$
3. If $\small{f(2a-x)~=~-f(x)}$, (1) becomes:
$\small{\int_0^{2a}{\left[f(x) \right]dx}~=~\int_0^a{\left[f(x) \right]dx}~-~\int_0^a{\left[f(x) \right]dx}~=~0}$
$\bf{{\rm{P_7}}:}$
$\bf{\int_{-a}^{a}{\left[f(x) \right]dx}~=~2 \int_0^a{\left[f(x) \right]dx}}$
♦ If $\small{f}$ is an even function
✰ That is., if $\small{f(-x)~=~f(x)}$
$\bf{\int_{-a}^{a}{\left[f(x) \right]dx}~=~0}$
♦ If $\small{f}$ is an odd function
✰ That is., if $\small{f(-x)~=~-f(x)}$
Proof can be written in 7 steps:
1. Using P2, we can write:
$\small{\int_{-a}^{a}{\left[f(x) \right]dx}~=~\int_{-a}^0{\left[f(x) \right]dx}~+~\int_0^a {\left[\,f(x) \right]dx}}$
• We can denote this as:
$\small{\int_{-a}^{a}{\left[f(x) \right]dx}~=~I_1~+~I_2}$
2. Put $\small{t=-x}$ in I1
$\small{\implies \frac{dt}{dx}~=~-1}$
$\small{\implies -dx~=~dt}$
Also, $\small{x = - t}$
3. Rearranging the limits of I1:
♦ When x approach the lower limit '-a', t approach 'a'
♦ When x approach the upper limit zero, t approach zero
4. So I1 can be written as:
$\small{\int_{-a}^0{\left[f(x) \right]dx}~=~\int_{a}^0{\left[f(-t) \right]dx}~=~\int_{a}^0{\left[(-1)(-1)f(-t) \right]dx}}$
$\small{~=~\int_{a}^0{\left[(-1)\,f(- t) \right]dt}~=~(-1)\int_{a}^0{\left[f(-t) \right]dt}}$
$\small{~=~(-1)\int_{a}^0{\left[f(-x) \right]dx}}$ (by P0q)
$\small{~=~\int_{0}^{a}{\left[f(-x) \right]dx}}$ (by P1)
5. So from step (1), we get:
$\small{\int_{-a}^{a}{\left[f(x) \right]dx}~=~\int_{0}^a{\left[f(-x) \right]dx}~+~\int_0^a {\left[\,f(x) \right]dx}}$
6. If $\small{f}$ is an even function, then $\small{f(-x)~=~f(x)}$
• In such a situation, step (5) becomes:
$\small{\int_{-a}^{a}{\left[f(x) \right]dx}~=~\int_{0}^a{\left[f(x) \right]dx}~+~\int_0^a {\left[\,f(x) \right]dx}~=~2\int_0^a {\left[\,f(x) \right]dx}}$
7. If $\small{f}$ is an odd function, then $\small{f(-x)~=~-f(x)}$
• In such a situation, step (5) becomes:
$\small{\int_{-a}^{a}{\left[f(x) \right]dx}~=~-\int_{0}^a{\left[f(x) \right]dx}~+~\int_0^a {\left[\,f(x) \right]dx}~=~0}$
◼ We can cite two examples related to P7:
Example 1:
This can be written in 5 steps:
1. $\small{f(x) \,=\,x^2}$ is an even function.
• Suppose that, we need to evaluate $\small{\int_{-1}^{1}{\left[x^2 \right]dx}}$
2. The usual approach is:
$\small{\int_{-1}^{1}{\left[x^2 \right]dx}\,=\,\left[\frac{x^3}{3} \right]_{-1}^1\,=\,\frac{1}{3}\,-\,\left(\frac{-1}{3} \right)\,=\,\frac{2}{3}}$
3. But by applying P7, we can straight away write:
$\small{\int_{-1}^{1}{\left[x^2 \right]dx}\,=\,2\int_{0}^{1}{\left[x^2 \right]dx}}$
$\small{\,=\,2 \left[\frac{x^3}{3} \right]_{0}^1\,=\,2\left[\frac{1}{3}\,-\,\frac{0}{3} \right]\,=\,\frac{2}{3}}$
4. We get the same result in both (2) and (3).
5. In the fig.23.24 below,
♦ the area of the blue region from x = -1 to x = 0 is 1/3
♦ the area of the blue region from x = 0 to x = 1 is also 1/3
![]() | ||
Fig.23.24 |
• Both areas are positive. So the total area from x = -1 to x = 1 will be twice (1/3)
Example 2:
This can be written in 5 steps:
1. $\small{f(x) \,=\,x^3}$ is an odd function.
• Suppose that, we need to evaluate $\small{\int_{-1}^{1}{\left[x^3 \right]dx}}$
2. The usual approach is:
$\small{\int_{-1}^{1}{\left[x^3 \right]dx}\,=\,\left[\frac{x^4}{4} \right]_{-1}^1\,=\,\frac{1}{4}\,-\,\frac{1}{4}\,=\,0}$
3. But by applying P7, we can straight away write:
$\small{\int_{-1}^{1}{\left[x^3 \right]dx}\,=\,0}$
4. We get the same result in both (2) and (3).
5. In the fig.23.25 below,
♦ the area of the blue region from x = -1 to x = 0 is 1/4
♦ the area of the blue region from x = 0 to x = 1 is also 1/4
![]() |
Fig.23.25 |
• The area from x = -1 to x = 0 is -ve. But the area from x = 0 to x = 1
is +ve. So the total area from x = -1 to x = 1 will be zero.
Now we will see some solved examples:
Solved Example 23.96
Given that:
$\small{\int_{1}^{5}{\left[f(x) \right]dx}\,=\,-3}$
$\small{\int_{2}^{5}{\left[f(x) \right]dx}\,=\,4}$
Find:
$\small{\int_{1}^{2}{\left[f(x) \right]dx}}$
Solution:
1. Applying P2, we can write:
$\small{\int_{1}^{5}{\left[f(x) \right]dx}\,=\,\int_{1}^{2}{\left[f(x) \right]dx}\,+\,\int_{2}^{5}{\left[f(x) \right]dx}}$
2. Substituting the known values, we get:
$\small{-3\,=\,\int_{1}^{2}{\left[f(x) \right]dx}\,+\,4}$
3. Therefore,
$\small{\int_{1}^{2}{\left[f(x) \right]dx}\,=\,-3 - 4 = -7}$
Solved Example 23.97
Evaluate $\small{\int_{-2}^{3}{\left[|x| \right]dx}}$
Solution:
1. We know that:
$\left|x \right| = \begin{cases} x, & \text{if}~x \ge 0 \\[1.5ex] -x, & \text{if}~x<0 \end{cases}$
2. The integrand changes at zero. So we will split the interval at zero. Then by applying P2, it can be written as:
$\small{\int_{-2}^{3}{\left[\left|x \right| \right]dx}\,=\,\int_{-2}^{0}{\left[\left|x \right| \right]dx}\,+\,\int_{0}^{3}{\left[\left|x \right| \right]dx}}$
• We will denote it as:
$\small{\int_{-2}^{3}{\left[\left|x \right| \right]dx}\,=\,I_1\,+\,I_2}$
3. Choosing the appropriate segments:
• For I1, we must use the segment: $\small{\left|x \right|\,=\,-x,~\text{if}~x<0}$
• For I2, we must use the segment: $\small{\left|x \right|\,=\,x,~\text{if}~x \ge 0}$
4. So from (2), we get:
$\small{\int_{-2}^{3}{\left[\left|x \right| \right]dx}\,=\,\int_{-2}^{0}{\left[-x \right]dx}\,+\,\int_{0}^{3}{\left[x \right]dx}}$
$\small{\,=\,(-1)\int_{-2}^{0}{\left[x \right]dx}\,+\,\int_{0}^{3}{\left[x \right]dx}}$
$\small{\,=\,(-1)\left[\frac{x^2}{2} \right]_{-2}^{0}\,+\,\left[\frac{x^2}{2} \right]_{0}^{3}}$
$\small{\,=\,(-1)\left[0\,-\,\frac{(-2)^2}{2} \right]\,+\,\left[\frac{3^2}{2}\,-\,0 \right]}$
$\small{\,=\,(-1)\left[-2 \right]\,+\,\left[\frac{9}{2} \right]~=~\frac{13}{2}}$
Solved Example 23.98
Evaluate $\small{\int_{-1}^{1}{\left[1\,-\,|x| \right]dx}}$
Solution:
1. We know that:
$\left|x \right| = \begin{cases} x, & \text{if}~x \ge 0 \\[1.5ex] -x, & \text{if}~x<0 \end{cases}$
2. The integrand changes at zero. So we will split the interval at zero. Then by applying P2, it can be written as:
$\small{\int_{-1}^{1}{\left[1\,-\,\left|x \right| \right]dx}\,=\,\int_{-1}^{0}{\left[1\,-\,\left|x \right| \right]dx}\,+\,\int_{0}^{1}{\left[1\,-\,\left|x \right| \right]dx}}$
• We will denote it as:
$\small{\int_{-1}^{1}{\left[1\,-\,\left|x \right| \right]dx}\,=\,I_1\,+\,I_2}$
3. Choosing the appropriate segments:
• For I1, we must use the segment: $\small{\left|x \right|\,=\,-x,~\text{if}~x<0}$
• For I2, we must use the segment: $\small{\left|x \right|\,=\,x,~\text{if}~x \ge 0}$
4. So from (2), we get:
$\small{\int_{-1}^{1}{\left[1\,-\,\left|x \right| \right]dx}\,=\,\int_{-1}^{0}{\left[1+x \right]dx}\,+\,\int_{0}^{1}{\left[1\,-\,x \right]dx}}$
$\small{\,=\,\left[x\,+\,\frac{x^2}{2} \right]_{-1}^{0}\,+\,\left[x\,-\,\frac{x^2}{2} \right]_{0}^{1}}$
$\small{\,=\,\left[0\,+\,\frac{0^2}{2}\,-\,\left(-1\,+\,\frac{(-1)^2}{2} \right) \right]\,+\,\left[1\,-\,\frac{1^2}{2}\,-\,\left(0\,-\,\frac{0^2}{2} \right) \right]}$
$\small{\,=\,\left[-\,\left(-1\,+\,\frac{1}{2} \right) \right]\,+\,\left[1\,-\,\frac{1}{2}\,-\,0 \right]}$
$\small{\,=\,\left[1\,-\,\frac{1}{2} \right]\,+\,\left[1\,-\,\frac{1}{2}\right]}$
$\small{\,=\,\left[\frac{1}{2} \right]\,+\,\left[\frac{1}{2}\right]\,=\,1}$
Solved Example 23.99
Evaluate $\small{\int_{0}^{4}{\left[\left|x-1 \right| \right]dx}}$
Solution:
1. Let us determine the intervals where (x−1) is +ve or −ve. For that, first we solve the inequality: x−1<0
We have: $\small{x-1 < 0}$
$\small{\Rightarrow x < 1}$
• So when x is less than 1, (x−1) will be -ve.
• That means, when x is less than 1, $\small{\left|x-1 \right|\,=\,-(x-1)}$
2. Next we solve the inequality:x−1>0
We have: $\small{x-1 > 0}$
$\small{\Rightarrow x > 1}$
• So when x is greater than 1, (x-1) will be +ve.
• That means, when x is greater than 1, $\small{\left|x-1 \right|\,=\,x-1}$
3. Also, we must solve the equation x-1 = 0
This gives x = 1
• So when x is equal to 1, (x-1) will be zero.
• That means, when x is equal to 1, $\small{\left|x-1 \right|\,=\,x-1}$
4. Now we can write a piece wise function:
$\left|x-1 \right| = \begin{cases} x-1, & \text{if}~x \ge 1 \\[1.5ex] -(x-1), & \text{if}~x<1 \end{cases}$
5. The integrand changes at 1. So we will split the interval at 1. Then by applying P2, it can be written as:
$\small{\int_{0}^{4}{\left[\left|x-1 \right| \right]dx}\,=\,\int_{0}^{1}{\left[\left|x-1 \right| \right]dx}\,+\,\int_{1}^{4}{\left[\left|x-1 \right| \right]dx}}$
• We will denote it as:
$\small{\int_{0}^{4}{\left[\left|x-1 \right| \right]dx}\,=\,I_1\,+\,I_2}$
6. Choosing the appropriate segments:
• For I1, we must use the segment: $\small{\left|x-1 \right|\,=\,-(x-1),~\text{if}~x<1}$
• For I2, we must use the segment: $\small{\left|x-1 \right|\,=\,x-1,~\text{if}~x \ge 1}$
7. So from (5), we get:
$\small{\int_{0}^{4}{\left[\left|x-1 \right| \right]dx}\,=\,\int_{0}^{1}{\left[-(x-1) \right]dx}\,+\,\int_{1}^{4}{\left[x-1 \right]dx}}$
$\small{\,=\,(-1)\int_{0}^{1}{\left[x-1 \right]dx}\,+\,\int_{1}^{4}{\left[x-1 \right]dx}}$
$\small{\,=\,(-1)\left[\frac{x^2}{2}\,-\,x \right]_{0}^{1}\,+\,\left[\frac{x^2}{2}\,-\,x \right]_{1}^{4}}$
$\small{\,=\,(-1)\left[\frac{1^2}{2}\,-\,1\,-\,\left(\frac{0^2}{2}\,-\,0 \right) \right]\,+\,\left[\frac{4^2}{2}\,-\,4\,-\,\left(\frac{1^2}{2}\,-\,1 \right) \right]}$
$\small{\,=\,(-1)\left[\frac{1}{2}\,-\,1\,-\,\left(0 \right) \right]\,+\,\left[\frac{16}{2}\,-\,4\,-\,\left(\frac{1}{2}\,-\,1 \right) \right]}$
$\small{\,=\,(-1)\left[-\frac{1}{2} \right]\,+\,\left[4\,+\,\frac{1}{2}\right]\,=\,5}$
Solved Example 23.100
Evaluate $\small{\int_{-1}^{2}{\left[\left|x^3\,-\,x \right| \right]dx}}$
Solution:
1. Let us determine the intervals where (x3 - x) is +ve or -ve.
2. For that, first we need to solve the equation: $\small{f(x)=x^3 - x = x(x^2 - 1)=0}$
• The solution is: x = −1, x = 0 and x = 1
• So the given interval [−1,2] can be split into three intervals: [−1,0], [0,1] and [1,2]
3. Consider the interval (−1,0). In this interval, all x values are -ve fractions. So $\small{x^2}$ will be a +ve fraction. Consequently, $\small{(x^2 - 1)}$ will be -ve and $\small{x(x^2 - 1)}$ will be +ve
So for this interval, we can write:
$\small{\left|x(x^2 - 1) \right|=x(x^2 - 1)~\text{if}~-1 < x < 0}$
4. Consider the interval (0,1). In this interval, all x values are +ve fractions. So $\small{x^2}$ will be a +ve fraction. Consequently, $\small{(x^2 - 1)}$ will be -ve and $\small{x(x^2 - 1)}$ will be -ve
So for this interval, we can write:
$\small{\left|x(x^2 - 1) \right|=-x(x^2 - 1)~\text{if}~0 < x < 1}$
5. Consider the interval (1,2). In this interval, all x values are greater than 1. So $\small{x^2}$ will be greater than 1. Consequently, $\small{(x^2 - 1)}$ will be +ve and $\small{x(x^2 - 1)}$ will be +ve.
So for this interval, we can write:
$\small{\left|x(x^2 - 1) \right|=x(x^2 - 1)~\text{if}~1 < x < 2}$
6. Consider the exact points x = −1, x = 0, x = 1 and x = 2
• When x = −1, $\small{x(x^2 - 1)} = 0$
So for this point, we can write:
$\small{\left|x(x^2 - 1) \right|= \pm x(x^2 - 1)~\text{if}~ x = -1}$
• When x = 0, $\small{x(x^2 - 1)} = 0$
So for this point, we can write:
$\small{\left|x(x^2 - 1) \right|= \pm x(x^2 - 1)~\text{if}~ x = 0}$
• When x = 1, $\small{x(x^2 - 1)} = 0$
So for this point, we can write:
$\small{\left|x(x^2 - 1) \right|= \pm x(x^2 - 1)~\text{if}~ x = 1}$
• When x = 2, $\small{x(x^2 - 1)} = 6$
So for this point, we can write:
$\small{\left|x(x^2 - 1) \right|= +x(x^2 - 1)~\text{if}~ x = 2}$
7. Combining (3), (4), (5) and (6), we can write:
$\left|x(x^2 - 1) \right| = \begin{cases} x(x^2 - 1), & \text{if}~-1 \le x \le 0 \\[1.5ex] -x(x^2 - 1), & \text{if}~~0 \le x \le 1 \\[1.5ex] x(x^2 - 1), & \text{if}~~1 \le x \le 2 \end{cases}$
8. The integrand changes at −1, 0 and 1. So we will split the interval at those points. Then by applying P2, it can be written as:
$\small{\int_{-1}^{2}{\left[\left|x^3-x \right| \right]dx}\,=\,\int_{-1}^{2}{\left[\left|x(x^2-1) \right| \right]dx}}$
$\small{\,=\,\int_{-1}^{0}{\left[\left|x(x^2-1) \right| \right]dx}\,+\,\int_{0}^{1}{\left[\left|x(x^2-1) \right| \right]dx}\,+\,\int_{1}^{2}{\left[\left|x(x^2-1) \right| \right]dx}}$
• We will denote it as:
$\small{\int_{-1}^{2}{\left[\left|x(x^2-1) \right| \right]dx}\,=\,I_1\,+\,I_2\,+\,I_3}$
9. Choosing the appropriate segments:
• For I1, we must use the segment: $\small{\left|x(x^2-1) \right|\,=\,x(x^2-1),~\text{if}~-1 \le x \le 0}$
• For I2, we must use the segment: $\small{\left|x(x^2-1) \right|\,=\,-x(x^2-1),~\text{if}~0 \le x \le 1}$
• For I3, we must use the segment: $\small{\left|x(x^2-1) \right|\,=\,x(x^2-1),~\text{if}~1 \le x \le 2}$
10. So from (8), we get:
$\small{\int_{-1}^{2}{\left[\left|x(x^2-1) \right| \right]dx}=}$
$\small{\,=\,\int_{-1}^{0}{\left[x(x^2-1) \right]dx}\,+\,\int_{0}^{1}{\left[-x(x^2-1) \right]dx}\,+\,\int_{1}^{2}{\left[x(x^2-1) \right]dx}}$
$\small{\,=\,\int_{-1}^{0}{\left[x^3-x \right]dx}\,+\,(-1)\int_{0}^{1}{\left[x^3-x \right]dx}\,+\,\int_{1}^{2}{\left[x^3-x \right]dx}}$
$\small{\,=\,\left[\frac{x^4}{4}\,-\,\frac{x^2}{2} \right]_{-1}^{0}\,+\,(-1) \left[\frac{x^4}{4}\,-\,\frac{x^2}{2} \right]_{0}^{1}\,+\, \left[\frac{x^4}{4}\,-\,\frac{x^2}{2} \right]_{1}^{2}}$
$\small{\,=\,\left[\frac{0^4}{4}\,-\,\frac{0^2}{2}\,-\,\left(\frac{(-1)^4}{4}\,-\,\frac{(-1)^2}{2} \right) \right]\,+\,(-1)\left[\frac{1^4}{4}\,-\,\frac{1^2}{2}\,-\,\left(\frac{0^4}{4}\,-\,\frac{0^2}{2} \right) \right]}$
$\small{~~~~~~+\left[\frac{2^4}{4}\,-\,\frac{2^2}{2}\,-\,\left(\frac{1^4}{4}\,-\,\frac{1^2}{2} \right) \right]}$
$\small{\,=\,\left[0\,-\,\left(\frac{-1}{4} \right) \right]\,+\,(-1)\left[\frac{-1}{4}\,-\,\left(0 \right) \right]+\left[2\,-\,\left(\frac{-1}{4} \right) \right]}$
$\small{\,=\,\left[\frac{1}{4} \right]\,+\,\left[\frac{1}{4} \right]+\left[\frac{9}{4} \right]\,=\,\frac{11}{4}}$
Solved Example 23.101
Evaluate $\small{\int_{-1}^{0}{\left[\left|4x\,+\,3 \right| \right]dx}}$
Solution:
1. Let us determine the intervals where (4x + 3) is +ve or -ve.
2. For that, first we need to solve the inequality: $\small{4x + 3 < 0}$
• The solution can be obtained as follows:
$\small{4x + 3 - 3 < 0 - 3}$
$\small{\Rightarrow 4x < - 3}$
$\small{\Rightarrow x < - \frac{3}{4}}$
That means, when x is less than $\small{- \frac{3}{4}}$, (4x+3) will be less than zero.
3. Next we need to solve the inequality: $\small{4x + 3 > 0}$
• The solution can be obtained as follows:
$\small{4x + 3 - 3 > 0 - 3}$
$\small{\Rightarrow 4x > - 3}$
$\small{\Rightarrow x > - \frac{3}{4}}$
That means, when x is greater than $\small{- \frac{3}{4}}$, (4x+3) will be greater than zero.
4. We have:
$\small{\frac{-3}{4}\,=\,-0.75}$
• So the given interval [−1,0] can be split into two intervals:
$\small{\left(-1,-0.75 \right),~\left(-0.75,0 \right)}$
5. Consider the interval (−1, −0.75)
Based on (2), we can write:
(4x+3) will be −ve in this interval
So for this interval, we can write:
$\small{\left|4x + 3 \right|= -(4x + 3)~\text{if}~-1 < x < -0.75}$
6. Consider the interval (-0.75,0)
Based on (3), we can write:
(4x+3) will be +ve in this interval
So for this interval, we can write:
$\small{\left|4x + 3 \right|= (4x + 3)~\text{if}~-0.75 < x < 0}$
7. Consider the exact points x = −1, x = −0.75, and x = 0
• When x = −1, $\small{4x + 3} = -1$
So for this point, we can write:
$\small{\left|4x + 3 \right|= -(4x + 3)~\text{if}~ x = -1}$
• When x = -0.75, $\small{4x + 3} = 0$
So for this point, we can write:
$\small{\left|4x + 3 \right|= \pm(4x + 3)~\text{if}~ x = -0.75}$
• When x = 0, $\small{4x + 3} = 3$
So for this point, we can write:
$\small{\left|4x + 3 \right|= 4x + 3~\text{if}~ x = 0}$
8. Combining (3), (4) and (5), we can write:
$\left|4x + 3 \right| = \begin{cases} -(4x + 3), & \text{if}~-1 \le x \le -0.75 \\[1.5ex] 4x + 3, & \text{if}~~-0.75 \le x \le 0 \end{cases}$
9. The integrand changes at -0.75. So we will split the interval at that point. Then by applying P2, it can be written as:
$\small{\int_{-1}^{0}{\left[\left|4x+3 \right| \right]dx}\,=\,\int_{-1}^{-0.75}{\left[\left|4x+3 \right| \right]dx}\,+\,\int_{-0.75}^{0}{\left[\left|4x+3 \right| \right]dx}}$
• We will denote it as:
$\small{\int_{-1}^{0}{\left[\left|4x+3 \right| \right]dx}\,=\,I_1\,+\,I_2}$
10. Choosing the appropriate segments:
• For I1, we must use the segment:
$\small{\left|4x + 3 \right|\,=\,-(4x+3),~\text{if}~-1 \le x \le -0.75}$
• For I2, we must use the segment:
$\small{\left|4x + 3 \right|\,=\,4x+3,~\text{if}~-0.75 \le x \le 0}$
11. So from (9), we get:
$\small{\int_{-1}^{0}{\left[\left|4x+3 \right| \right]dx}=}$
$\small{\,=\,\int_{-1}^{-0.75}{\left[-(4x+3) \right]dx}\,+\,\int_{-0.75}^{1}{\left[4x+3 \right]dx}}$
$\small{\,=\,(-1)\int_{-1}^{-0.75}{\left[4x+3 \right]dx}\,+\,\int_{-0.75}^{1}{\left[4x+3 \right]dx}}$
$\small{\,=\,(-1)\left[\frac{4 x^2}{2}\,+\,3x \right]_{-1}^{-0.75}\,+\,\left[\frac{4 x^2}{2}\,+\,3x \right]_{-0.75}^{0}}$
$\small{\,=\,(-1)\left[2x^2\,+\,3x \right]_{-1}^{-0.75}\,+\,\left[2x^2\,+\,3x \right]_{-0.75}^{0}}$
$\small{\,=\,(-1)\left[2(-0.75)^2\,+\,3(-0.75)\,-\,\left(2(-1)^2\,+\,3(-1) \right) \right]}$
$\small{~~~~~~+\left[2(0)^2\,+\,3(0)\,-\,\left(2(-0.75)^2\,+\,3(-0.75) \right) \right]}$
$\small{\,=\,\frac{5}{4}}$
In the next section, we will see a few more solved examples.
Previous
Contents
Next
Copyright©2025 Higher secondary mathematics.blogspot.com