Friday, June 27, 2025

23.28 - More Solved Examples on Properties of Definite Integrals

In the previous section, we saw some properties of definite integrals. We saw some solved examples also. In this section, we will see a few more solved examples.

Solved Example 23.112
Evaluate $\small{\int_{0}^{\frac{\pi}{2}}{\left[\frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \right]dx}}$
Solution:
1. The limits are $\small{0~\rm{and}~\frac{\pi}{2}}$. So we will apply:

$\bf{{\rm{P_4}}:\int_0^a{\left[f(x) \right]dx}~=~\int_0^a{\left[f(a-x) \right]dx}}$

We get:
$\small{I~=~\int_{0}^{\frac{\pi}{2}}{\left[\frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}\right]dx}~=~\int_{0}^{\frac{\pi}{2}}{\left[\frac{\sqrt{\sin \left(\frac{\pi}{2} - x \right)}}{\sqrt{\sin \left(\frac{\pi}{2} - x \right)} + \sqrt{\cos \left(\frac{\pi}{2} - x \right)}} \right]dx}  }$

$\small{~=~\int_{0}^{\frac{\pi}{2}}{\left[\frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}}\right]dx}}$

2. Now, I + I = 2I =

$\small{\int_{0}^{\frac{\pi}{2}}{\left[\frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \right]dx}+\int_{0}^{\frac{\pi}{2}}{\left[\frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} \right]dx}=\int_{0}^{\frac{\pi}{2}}{\left[\frac{\sqrt{\sin x}~+~\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} \right]dx}}$

$\small{~=\int_{0}^{\frac{\pi}{2}}{\left[1 \right]dx}=[x]_{0}^{\frac{\pi}{2}}=\frac{\pi}{2}}$

Therefore, $\small{I = \frac{\pi}{4}}$

Solved Example 23.113
Evaluate $\small{\int_{0}^{a}{\left[\frac{\sqrt{x}}{\sqrt{x} + \sqrt{a-x}} \right]dx}}$
Solution:
1. The limits are $\small{0~\rm{and}~a}$. So we will apply:

$\bf{{\rm{P_4}}:\int_0^a{\left[f(x) \right]dx}~=~\int_0^a{\left[f(a-x) \right]dx}}$

We get:
$\small{I~=~\int_{0}^{a}{\left[\frac{\sqrt{x}}{\sqrt{x} + \sqrt{a-x}}\right]dx}~=~\int_{0}^{a}{\left[\frac{\sqrt{a-x}}{\sqrt{a-x} ~+~ \sqrt{a-(a-x)}}\right]dx}  }$

$\small{~=~\int_{0}^{a}{\left[\frac{\sqrt{a-x}}{\sqrt{a-x} ~+~ \sqrt{x}}\right]dx}}$

2. Now, I + I = 2I =

$\small{\int_{0}^{a}{\left[\frac{\sqrt{x}}{\sqrt{x} + \sqrt{a-x}}\right]dx}+\int_{0}^{a}{\left[\frac{\sqrt{a-x}}{\sqrt{a-x} ~+~ \sqrt{x}}\right]dx}=\int_{0}^{a}{\left[\frac{\sqrt{x}+\sqrt{a-x}}{\sqrt{x} + \sqrt{a-x}}\right]dx}}$

$\small{~=\int_{0}^{a}{\left[1 \right]dx}=[x]_{0}^{a}=a}$

Therefore, $\small{I = \frac{a}{2}}$

Solved Example 23.114
Evaluate $\small{\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}{\left[\sin^7 x \right]dx}}$
Solution:
1. The limits are $\small{\frac{-\pi}{2}~\rm{and}~\frac{\pi}{2}}$.
So we check whether $\small{f(x)=\sin^7 x}$ is even or odd.

(a) $\small{f(-x)\,=\,\sin^7 (-x)\,=\,\left(\sin(-x) \right)^7}$

$\small{\,=\,\left(-\sin(x) \right)^7\,=\,-\sin^7 x}$

$\small{\because \sin(-x) = -\sin x}$

(b) $\small{-f(x)\,=\,-\sin^7 (x)}$

(c) We see that:

$\small{f(-x) \,=\,-f(x)}$

• So the given f(x) is an odd function.

2. Since the given function is odd, we can apply:

$\bf{{\rm{P_7~(ii)}}:}$

$\bf{\int_{-a}^{a}{\left[f(x) \right]dx}~=~0}$
   ♦ If $\small{f}$ is an odd function

• We can write: $\small{\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}{\left[\sin^7 x \right]dx}~=~0}$

Solved Example 23.115
Evaluate $\small{\int_{0}^{2\pi}{\left[\cos^5 x \right]dx}}$
Solution:
1. The limits are 0 and $\small{2 \pi}$.
So we can apply:

$\bf{{\rm{P_6}}:}$

$\bf{\int_0^{2a}{\left[f(x) \right]dx}~=~2 \int_0^a{\left[f(x) \right]dx}}$
   ♦ If $\small{f(2a - x)~=~f(x)}$

$\bf{\int_0^{2a}{\left[f(x) \right]dx}~=~0}$
   ♦ If $\small{f(2a - x)~=~-f(x)}$
   
Here, 2a = $\small{2 \pi}$

So $\small{f(2a-x) = \cos^5(2 \pi - x)=\left(\cos(2\pi -x) \right)^5 =\left(\cos(x) \right)^5 = \cos^5 x = f(x)}$

So we can apply P6 (i). We get:

$\small{\int_{0}^{2\pi}{\left[\cos^5 x \right]dx}=2\int_{0}^{\pi}{\left[\cos^5 x \right]dx}~=~2I}$

2. We want to find I. We will apply:

$\bf{{\rm{P_4}}:\int_0^a{\left[f(x) \right]dx}~=~\int_0^a{\left[f(a-x) \right]dx}}$

We get:

$\small{I = \int_{0}^{\pi}{\left[\cos^5 x \right]dx}=\int_{0}^{\pi}{\left[\cos^5 (\pi - x) \right]dx} }$

$\small{\int_{0}^{\pi}{\left[(-\cos x)^5 \right]dx} =\int_{0}^{\pi}{\left[(-1)\cos^5x\right]dx}=(-1)\int_{0}^{\pi}{\left[\cos^5x\right]dx}=(-1)I}$

[$\small{\because~\cos(\pi - x)=-\cos x}$]

• Then $\small{2I = 0}$

3. Therefore, from the result in (1), we get:

$\small{\int_{0}^{2\pi}{\left[\cos^5 x \right]dx}~=~2I~=~0}$

Solved Example 23.116
Evaluate $\small{\int_{0}^{\frac{\pi}{2}}{\left[2 \log \sin(x) - \log \sin(2x) \right]dx}}$
Solution:
1. Let us rearrange the given function:

$\small{f(x)=2 \log \sin(x) - \log \sin(2x)= \frac{}{} \log \sin^2(x) - \log \sin(2x)}$

$\small{= \log\left(\frac{\sin^2(x)}{\sin(2x)} \right)= \log\left(\frac{\sin^2(x)}{2 \sin x \cos x} \right)=\log(\sin x)-\log(\cos x)-\log 2}$

2. So we can write:

$\small{I = \int_{0}^{\frac{\pi}{2}}{\left[2 \log \sin(x) - \log \sin(2x) \right]dx}=\int_{0}^{\frac{\pi}{2}}{\left[\log(\sin x)-\log(\cos x)-\log 2\right]dx}}$

$\small{\Rightarrow I =\int_{0}^{\frac{\pi}{2}}{\left[\log(\sin x)-\log(\cos x)\right]dx}+(-1)\int_{0}^{\frac{\pi}{2}}{\left[\log 2\right]dx}}$

3. Applying P4, we get:

$\small{I=\int_{0}^{\frac{\pi}{2}}{\left[\log(\sin (\frac{\pi}{2}-x))-\log(\cos (\frac{\pi}{2}-x))\right]dx}+(-1)\int_{0}^{\frac{\pi}{2}}{\left[\log 2\right]dx}}$

$\small{\Rightarrow I=\int_{0}^{\frac{\pi}{2}}{\left[\log(\cos x)-\log(\sin x)\right]dx}+(-1)\int_{0}^{\frac{\pi}{2}}{\left[\log 2\right]dx}}$

$\small{\Rightarrow I=(-1)\int_{0}^{\frac{\pi}{2}}{\left[\log(\sin x)-\log(\cos x)\right]dx}+(-1)\int_{0}^{\frac{\pi}{2}}{\left[\log 2\right]dx}}$

4. Let us compare the results from (2) and (3):

• From (2), we have:

$\small{I =\int_{0}^{\frac{\pi}{2}}{\left[\log(\sin x)-\log(\cos x)\right]dx}+(-1)\int_{0}^{\frac{\pi}{2}}{\left[\log 2\right]dx}}$

• From (3), we have:

$\small{I=(-1)\int_{0}^{\frac{\pi}{2}}{\left[\log(\sin x)-\log(\cos x)\right]dx}+(-1)\int_{0}^{\frac{\pi}{2}}{\left[\log 2\right]dx}}$

5. Adding the two results, we get:

$\small{2I=(-2)\int_{0}^{\frac{\pi}{2}}{\left[\log 2\right]dx}}$

$\small{\Rightarrow I=(-1)\int_{0}^{\frac{\pi}{2}}{\left[\log 2\right]dx}=(-1)(\log 2)[x]_0^{\frac{\pi}{2}}}$

$\small{=(-1)(\log 2)\left[\frac{\pi}{2} \right]=\frac{\pi}{2} \left[\log\left( \frac{1}{2}\right) \right]}$

Solved Example 23.117
Evaluate $\small{\int_{0}^{\frac{\pi}{2}}{\left[\log \sin(x) \right]dx}}$
Solution:
1. The limits are $\small{0~\rm{and}~\frac{\pi}{2}}$. So we will apply:

$\bf{{\rm{P_4}}:\int_0^a{\left[f(x) \right]dx}~=~\int_0^a{\left[f(a-x) \right]dx}}$

We get:
$\small{I~=~\int_{0}^{\frac{\pi}{2}}{\left[\log \sin(x)\right]dx}~=~\int_{0}^{\frac{\pi}{2}}{\left[\log \sin \left(\frac{\pi}{2} - x \right) \right]dx}  }$

$\small{~=~\int_{0}^{\frac{\pi}{2}}{\left[\log \cos(x)\right]dx}}$

2. Now, I + I = 2I =

$\small{\int_{0}^{\frac{\pi}{2}}{\left[\log \sin(x) \right]dx}+\int_{0}^{\frac{\pi}{2}}{\left[\log \cos(x) \right]dx}=\int_{0}^{\frac{\pi}{2}}{\left[\log \sin(x) + \log \cos(x) \right]dx}}$

$\small{~=\int_{0}^{\frac{\pi}{2}}{\Big[\log \left[\sin(x)\,\cos x \right] \Big]dx}}$

3. Let us add and subtract "log 2". We get:

$\small{2I~=\int_{0}^{\frac{\pi}{2}}{\Big[\log \left[\sin(x)\,\cos x \right]~+~\log 2~-~\log 2 \Big]dx}}$

$\small{\Rightarrow 2I~=~\int_{0}^{\frac{\pi}{2}}{\Big[\log \left[2 \sin(x)\,\cos x \right]~-~\log 2 \Big]dx}~=~\int_{0}^{\frac{\pi}{2}}{\Big[\log \left[\sin(2x) \right]~-~\log 2 \Big]dx}}$

$\small{\Rightarrow 2I~=~\int_{0}^{\frac{\pi}{2}}{\Big[\log \left[\sin(2x) \right] \Big]dx}~-~\int_{0}^{\frac{\pi}{2}}{\Big[\log 2 \Big]dx}~=~I_1~-~I_2}$

4. Now we will evaluate $\small{I_1}$:

We have: $\small{I_1~=~\int_{0}^{\frac{\pi}{2}}{\Big[\log \left[\sin(2x) \right] \Big]dx}}$

• Put u = 2x

• Then $\small{\frac{du}{dx}~=~2 ~\Rightarrow 2dx = du}$

Also, When x approach zero, u approach zero

And when x approach $\small{\frac{\pi}{2}}$, u approach $\small{\pi}$

Then $\small{I_1~=~\int_{0}^{\frac{\pi}{2}}{\Big[\left(\frac{2}{2} \right)\log \left[\sin(2x) \right] \Big]dx}~=~\int_{0}^{\pi}{\Big[\left(\frac{1}{2} \right)\log \left[\sin(u) \right] \Big]du}}$

$\small{\Rightarrow I_1~=~\left(\frac{1}{2} \right) \int_{0}^{\pi}{\Big[\log \left[\sin(u) \right] \Big]du}}$ 

5. Let us apply:

$\bf{{\rm{P_6}}:}$

$\bf{\int_0^{2a}{\left[f(x) \right]dx}~=~2 \int_0^a{\left[f(x) \right]dx}}$
   ♦ If $\small{f(2a - x)~=~f(x)}$

$\bf{\int_0^{2a}{\left[f(x) \right]dx}~=~0}$
   ♦ If $\small{f(2a - x)~=~-f(x)}$
   
• Here assume that, 2a = $\small{\pi}$

• Given $\small{f(u)=\log[\sin(u)]}$

• $\small{f(2a-u)=\log[\sin(\pi-u)]~=~\log[\sin (u)]~=~f(u)}$

So we can apply P6 (i). We get:

$\small{I_1~=~\left(\frac{1}{2} \right) \int_{0}^{\pi}{\Big[\log \left[\sin(u) \right] \Big]du}}$

$\small{\int_{0}^{\pi}{\Big[\log \left[\sin(u) \right] \Big]du}~=~2\int_{0}^{\frac{\pi}{2}}{\Big[\log \left[\sin(u) \right] \Big]du}}$

6. Then from (4), we get:

$\small{I_1~=~\left(\frac{1}{2} \right) \int_{0}^{\pi}{\Big[\log \left[\sin(u) \right] \Big]du}~=~\left(\frac{1}{2} \right)(2) \int_{0}^{\frac{\pi}{2}}{\Big[\log \left[\sin(u) \right] \Big]du}}$

$\small{\Rightarrow I_1~=~ \int_{0}^{\frac{\pi}{2}}{\Big[\log \left[\sin(u) \right] \Big]du}}$

7. Applying P0 to the result in (6), we can write:

$\small{I_1~=~ \int_{0}^{\frac{\pi}{2}}{\Big[\log \left[\sin(x) \right] \Big]dx}}$

$\small{\Rightarrow I_1~=~ I}$

8. Now, based on the result in (3), we can write:

$\small{2I~=~I~-~I_2}$

$\small{\Rightarrow I~=~(-1)I_2}$

$\small{\Rightarrow I~=~(-1)\int_{0}^{\frac{\pi}{2}}{\Big[\log 2 \Big]dx}}$

$\small{\Rightarrow I~=~(-1){\Big[\log 2\left(\frac{\pi}{2} \right) \Big]dx}~=~\frac{-\pi\,\log 2}{2}}$

Solved Example 23.118
Evaluate $\small{\int_{0}^{\frac{\pi}{2}}{\left[\log\left(\frac{4 + 3 \sin x}{4 + 3 \cos x} \right) \right]dx}}$
Solution:
1. The limits are $\small{0~\rm{and}~a}$. So we will apply:

$\bf{{\rm{P_4}}:\int_0^a{\left[f(x) \right]dx}~=~\int_0^a{\left[f(a-x) \right]dx}}$

We get:

$\small{I~=~\int_{0}^{\frac{\pi}{2}}{\left[\log\left(\frac{4 + 3 \sin x}{4 + 3 \cos x} \right) \right]dx}~=~\int_{0}^{\frac{\pi}{2}}{\left[\log\left(4 + 3 \sin x \right)~-~\log\left(4 + 3 \cos x \right) \right]dx}  }$

$\small{~=~\int_{0}^{\frac{\pi}{2}}{\left[\log\left(4 + 3 \sin \left(\frac{\pi}{2} - x \right) \right)~-~\log\left(4 + 3 \cos \left(\frac{\pi}{2} - x \right) \right) \right]dx}  }$

$\small{~=~\int_{0}^{\frac{\pi}{2}}{\left[\log\left(4 + 3 \cos x  \right)~-~\log\left(4 + 3 \sin x \right) \right]dx}  }$

$\small{~=~(-1)\int_{0}^{\frac{\pi}{2}}{\left[\log\left(4 + 3 \sin x  \right)~-~\log\left(4 + 3 \cos x \right) \right]dx}  }$

$\small{~=~(-1)I }$

2. Therefore, 2I = 0, Which gives I = 0


The link below gives a few more solved examples:

Exercise 23.11


In the next section, we will see some miscellaneous solved examples.

Previous

Contents

Next 

Copyright©2025 Higher secondary mathematics.blogspot.com

No comments:

Post a Comment