Loading [MathJax]/jax/output/HTML-CSS/jax.js

Saturday, August 10, 2024

21.21 Miscellaneous Examples

In the previous section, we completed a discussion on Rolle's theorem and mean value theorem. In this section, we will see some miscellaneous examples.

Solved example 21.66
Differentiate w.r.t x the following functions:
(i) 3x+2 + 12x2+4
(ii) esec2x + 3cos1x
(iii) log7(logx)
Solution:
Part (i):
 1y = 3x+2 + 12x2+4 2 = (3x+2)1/2 + (2x2+4)1/2 3dydx = 1/2(3x+2)1/2.3 + (1/2)(2x2+4)3/2.4x 4 = 323x+2  2x(2x2+4)3

Part (ii):
1. First we will split the given function
 1y = esec2x + 3cos1x 2 = u+v 3dydx = dudx + dvdx

2. Now we will find dudx:
 1u = esec2x 2logu = sec2x.logee 3logu = sec2x 4ddx[logu] = ddx[sec2x] 51u.dudx = 2secx.secxtanx 6dudx = u.2secx.secxtanx 7 = 2esec2xsec2xtanx

3. Now we will find dvdx:
 1v = 3cos1x 2dvdx = 3ddx[cos1x] 3 = 3.(1)1x2 4 = 31x2

4. So based on (1), we get:
dydx = dudx + dvdx

= 2esec2xsec2xtanx  31x2

Part (iii):
 1y = log7(logx) 2 = loge(logx)loge7 3dydx = 1loge7ddx[loge(logx)] 4 = 1loge7.1logx.1x 5 = 1xlog7logx


◼ Remarks:
• 2 (magenta color): Here we apply change of base rule.
• 5 (magenta color): When the base of logarithm is not specified, it implies that, the base is e.

Solved example 21.67
Differentiate w.r.t x the following functions:
(i) cos1(sinx)
(ii) tan1(sinx1+cosx)
(iii) sin1(2x+11+4x)
Solution:
Part (i):
 1y = cos1(sinx) 2dydx = 11sin2x.ddx(sinx) 3 = 1cos2x.cosx 4 = 1

Alternate method:
 1y = cos1(sinx) 2 = cos1[cos(π2  x)] 3 = π2  x 4dydx = 1

Part (ii): tan1(sinx1+cosx)
 1y = tan1(sinx1+cosx) 2 = tan1(tanx2) 3 = x2 4dydx = 12


◼ Remarks:
• 2 (magenta color): Here we use identities:
cosx = 12sin2x2
cosx = 2cos2x21

Combining these two identities, we get:
tanx2 = sinx1+cosx

Part (iii): sin1(2x+11+4x)

1. First we will simplify the expression.
 1Let 2x = t 2Given: 2x+11+4x = 2.2x1+(2.2)x 3 = 2.2x1+2x.2x 4 = 2t1+t2

2. Next we will write 't' in terms of 𝜃.
 1Let t = tanθ2 2Then: 2t1+t2 = sinθ

(Identity 15. List of identities can be seen here

3. Next we will write 'y' in terms of 𝜃.
 1y = sin1(2x+11+4x) 2 = sin1(2t1+t2) 3 = sin1(sinθ) 4 = θ

4. Next we will write 𝜃 in terms of 'x'.
 12x = t 2 = tanθ2 3θ2 = tan1(2x) 4θ = 2.tan1(2x)

5. Based on (3), we can now connect 'y' and 'x'.
 1y = 2.tan1(2x) 2dydx = 2.11+(2x)2.ddx(2x) 3 = 2.11+(22)x.ddx(2x) 4 = 21+4x.ddx(2x)

6. So our next task is to find the derivative of 2x.
 1u = 2x 2logu = xlog2 31u.dudx = 1.log2 4dudx = u.log2 5 = 2xlog2

7. So from (5), we get:
 1dydx = 21+4x.ddx(2x) 2 = 21+4x.(2x)log2 3 = 2x+1log21+4x



In the next section, we will see a few more solved examples.

Previous

Contents


Next

Copyright©2024 Higher secondary mathematics.blogspot.com

No comments:

Post a Comment