In the previous section, we completed a discussion on Rolle's theorem and mean value theorem. In this section, we will see some miscellaneous examples.
Solved example 21.66
Differentiate w.r.t x the following functions:
(i) √3x+2 + 1√2x2+4
(ii) esec2x + 3cos−1x
(iii) log7(logx)
Solution:
Part (i):
1y = √3x+2 + 1√2x2+4 2 = (3x+2)1/2 + (2x2+4)−1/2 3⟹dydx = 1/2(3x+2)−1/2.3 + (−1/2)(2x2+4)−3/2.4x 4 = 32√3x+2 − 2x(√2x2+4)3
Part (ii):
1. First we will split the given function
1y = esec2x + 3cos−1x 2 = u+v 3⟹dydx = dudx + dvdx
2. Now we will find dudx:
1u = esec2x 2⟹logu = sec2x.logee 3⟹logu = sec2x 4⟹ddx[logu] = ddx[sec2x] 5⟹1u.dudx = 2secx.secxtanx 6⟹dudx = u.2secx.secxtanx 7 = 2esec2xsec2xtanx
3. Now we will find dvdx:
1v = 3cos−1x 2⟹dvdx = 3ddx[cos−1x] 3 = 3.(−1)√1–x2 4 = −3√1–x2
4. So based on (1), we get:
dydx = dudx + dvdx
= 2esec2xsec2xtanx − 3√1–x2
Part (iii):
1y = log7(logx) 2 = loge(logx)loge7 3⟹dydx = 1loge7ddx[loge(logx)] 4 = 1loge7.1logx.1x 5 = 1xlog7logx
◼ Remarks:
• 2 (magenta color): Here we apply change of base rule.
• 5 (magenta color): When the base of logarithm is not specified, it implies that, the base is e.
Solved example 21.67
Differentiate w.r.t x the following functions:
(i) cos−1(sinx)
(ii) tan−1(sinx1+cosx)
(iii) sin−1(2x+11+4x)
Solution:
Part (i):
1y = cos−1(sinx) 2⟹dydx = −1√1−sin2x.ddx(sinx) 3 = −1√cos2x.cosx 4 = −1
Alternate method:
1y = cos−1(sinx) 2 = cos−1[cos(π2 − x)] 3 = π2 − x 4⟹dydx = −1
Part (ii): tan−1(sinx1+cosx)
1y = tan−1(sinx1+cosx) 2 = tan−1(tanx2) 3 = x2 4⟹dydx = 12
◼ Remarks:
• 2 (magenta color): Here we use identities:
cosx = 1−2sin2x2
cosx = 2cos2x2−1
Combining these two identities, we get:
tanx2 = sinx1+cosx
Part (iii): sin−1(2x+11+4x)
1. First we will simplify the expression.
1Let 2x = t 2Given: 2x+11+4x = 2.2x1+(2.2)x 3 = 2.2x1+2x.2x 4 = 2t1+t2
2. Next we will write 't' in terms of 𝜃.
1Let t = tanθ2 2Then: 2t1+t2 = sinθ
(Identity 15. List of identities can be seen here)
3. Next we will write 'y' in terms of 𝜃.
1y = sin−1(2x+11+4x) 2 = sin−1(2t1+t2) 3 = sin−1(sinθ) 4 = θ
4. Next we will write 𝜃 in terms of 'x'.
12x = t 2 = tanθ2 3⟹θ2 = tan−1(2x) 4⟹θ = 2.tan−1(2x)
5. Based on (3), we can now connect 'y' and 'x'.
1y = 2.tan−1(2x) 2⟹dydx = 2.11+(2x)2.ddx(2x) 3 = 2.11+(22)x.ddx(2x) 4 = 21+4x.ddx(2x)
6. So our next task is to find the derivative of 2x.
1u = 2x 2⟹logu = xlog2 3⟹1u.dudx = 1.log2 4⟹dudx = u.log2 5 = 2xlog2
7. So from (5), we get:
1dydx = 21+4x.ddx(2x) 2 = 21+4x.(2x)log2 3 = 2x+1log21+4x
In the next section, we will see a few more solved examples.
Previous
Contents
Next
Copyright©2024 Higher secondary mathematics.blogspot.com
No comments:
Post a Comment