In the previous section, we completed a discussion on the derivatives of trigonometric functions. In this section, we will see some miscellaneous examples.
Solved example 13.19
Find the derivative of f from the first principle, where f is given by
(i) f(x)=2x+3x−2 (ii) f(x)=x+1x
Solution:
Part (i):
f′(x) = limh→0[f(x+h)–f(x)h] = limh→0[2(x+h)+3(x+h)−2 – 2x+3x−2h] = limh→0[2x+2h+3x+h−2 – 2x+3x−2h] = limh→0[(2x+2h+3)(x−2) − (x+h−2)(2x+3)(x+h−2)(x−2)h] = limh→0[2x2−4x+2hx−4h+3x−6−2x2−2hx+4x−3x−3h+6(x+h−2)(x−2)h] = limh→0[−4h−3h(x+h−2)(x−2)h] = limh→0[−7hh(x+h−2)(x−2)] = limh→0[−7(x+h−2)(x−2)] = −7(x−2)(x−2) = −7(x−2)2
Part (ii):
f′(x) = limh→0[f(x+h)–f(x)h] = limh→0[[(x+h)+1(x+h)] − [x+1x]h] = limh→0[[(x+h)2+1(x+h)] − [x2+1x]h] = limh→0[[(x+h)2+1]x − [(x2+1)(x+h)](x+h)xh] = limh→0[[(x+h)2+1]x − [(x2+1)(x+h)](x+h)xh] = limh→0[[x(x+h)2+x] − [x3+x2h+x+h](x+h)xh] = limh→0[[x3+2x2h+h2x+x] − [x3+x2h+x+h](x+h)xh] = limh→0[x3+2x2h+h2x+x − x3−x2h−x−h(x+h)xh] = limh→0[x2h+h2x−h(x+h)xh] = limh→0[h(x2+hx−1)(x+h)xh] = limh→0[x2+hx−1(x+h)x] = x2+(0)x−1(x+0)x = x2−1x2 = 1−1x2
Solved example 13.20
Find the derivative of f(x) from the first principle, where f(x) is
(i) sin x + cos x (ii) x sin x
Solution:
Part (i):
f′(x) = limh→0[f(x+h)–f(x)h] = limh→0[[sin(x+h)+cos(x+h)] − [sinx+cosx]h] = limh→0[sin(x+h)+cos(x+h)−sinx−cosxh] = limh→0[sin(x+h)+cos(x+h)−sinx−cosxh] = limh→0[[sin(x+h)−sinx]+[cos(x+h)−cosx]h] = limh→0[[2cos2x+h2sinh2]+[−2sin2x+h2sinh2]h] - - - I = limh→0[2sinh2[cos2x+h2 − sin2x+h2]h] = limh→0[sinh2h/2] × limh→0[cos2x+h2 − sin2x+h2] = 1 × [cos2x+02 − sin2x+02] = 1 × [cosx − sinx] = cosx − sinx
◼ Remarks:
• Line marked as I:
Here we use the following identities:
♦ sin A - sin B = 2 cos (A+B)/2 sin (A-B)/2
♦ cos A - cos B = -2 sin (A+B)/2 sin (A-B)/2
Part (ii):
f′(x) = limh→0[f(x+h)–f(x)h] = limh→0[(x+h)sin(x+h) − xsinxh] = limh→0[xsin(x+h)+hsin(x+h)−xsinxh] = limh→0[x[sin(x+h)−sinx]+hsin(x+h)h] = limh→0[x[2cos2x+h2sinh2]+hsin(x+h)h] - - - I = limh→0[2xcos2x+h2sinh2h] + limh→0[hsin(x+h)h] = [limh→0[xcos2x+h2] × limh→0[sinh2h/2]] + limh→0[sin(x+h)] = [[xcos2x+02] × 1] + [sin(x+0)] = xcosx+sinx
◼ Remarks:
• Line marked as I:
Here we use the following identity:
♦ sin A - sin B = 2 cos (A+B)/2 sin (A-B)/2
Solved example 13.21
Compute the derivative of
(i) f(x) = sin 2x (ii) g(x) = cot x
Solution:
Part (i):
f′(x) = (sin2x)′ = (2sinxcosx)′ = (2sinx)′(cosx) + (2sinx)(cosx)′- - - I = (2sinx)′(cosx) + (2sinx)(−sinx) = (2sinx)′(cosx) − 2sin2x = [(2)′sinx + (2)(sinx)′]cosx − 2sin2x = [0×sinx + (2)(cosx)]cosx − 2sin2x = [2cosx]cosx − 2sin2x = 2cos2x − 2sin2x = 2(cos2x−sin2x)
◼ Remarks:
• Line marked as I:
Here we use the product rule: (uv)' = u'v + uv'
Part (ii):
• Here we want to find the derivative of cot x.
• This is already done before.
• See question number 11(v) of Exercise 13.2.
Solved example 13.22
Find the derivative of
(i) x5−cosxsinx (ii) x+cosxtanx
Solution:
Part (i):
1. Here we can use quotient rule:
(uv)′=u′v−uv′u2
•
In our present case,
♦ u = x5 - cos x
♦ v = sin x
2. Thus we get:
f′(x) = [(x5−cosx)′sinx] − [(x5−cosx)(sinx)′]sin2x = [(5x4+sinx)sinx] − [(x5−cosx)(cosx)]sin2x = [5x4sinx+sin2x] − [x5cosx−cos2x]sin2x = 5x4sinx+sin2x−x5cosx+cos2xsin2x = 5x4sinx−x5cosx+1sin2x = −x5cosx+5x4sinx+1sin2x
Part (ii):
1. Here we can use quotient rule:
(uv)′=u′v−uv′u2
•
In our present case,
♦ u = x + cos x
♦ v = tan x
2. Thus we get:
f′(x) = [(x+cosx)′tanx] − [(x+cosx)(tanx)′]tan2x = [(1−sinx)tanx] − [(x+cosx)(sec2x)]tan2x
Link to a few more miscellaneous examples is given below:
Miscellaneous Exercise on chapter 13
In the next chapter, we will see mathematical reasoning.
No comments:
Post a Comment