Loading [MathJax]/jax/output/HTML-CSS/jax.js

Sunday, June 11, 2023

Chapter 13.18 - Miscellaneous Examples

In the previous section, we completed a discussion on the derivatives of trigonometric functions. In this section, we will see some miscellaneous examples.

Solved example 13.19
Find the derivative of f from the first principle, where f is given by
(i) f(x)=2x+3x2    (ii) f(x)=x+1x
Solution:
Part (i):
f(x) = limh0[f(x+h)f(x)h] = limh0[2(x+h)+3(x+h)2  2x+3x2h] = limh0[2x+2h+3x+h2  2x+3x2h] = limh0[(2x+2h+3)(x2)  (x+h2)(2x+3)(x+h2)(x2)h] = limh0[2x24x+2hx4h+3x62x22hx+4x3x3h+6(x+h2)(x2)h] = limh0[4h3h(x+h2)(x2)h] = limh0[7hh(x+h2)(x2)] = limh0[7(x+h2)(x2)] = 7(x2)(x2) = 7(x2)2

Part (ii):
f(x) = limh0[f(x+h)f(x)h] = limh0[[(x+h)+1(x+h)]  [x+1x]h] = limh0[[(x+h)2+1(x+h)]  [x2+1x]h] = limh0[[(x+h)2+1]x  [(x2+1)(x+h)](x+h)xh] = limh0[[(x+h)2+1]x  [(x2+1)(x+h)](x+h)xh] = limh0[[x(x+h)2+x]  [x3+x2h+x+h](x+h)xh] = limh0[[x3+2x2h+h2x+x]  [x3+x2h+x+h](x+h)xh] = limh0[x3+2x2h+h2x+x  x3x2hxh(x+h)xh] = limh0[x2h+h2xh(x+h)xh] = limh0[h(x2+hx1)(x+h)xh] = limh0[x2+hx1(x+h)x] = x2+(0)x1(x+0)x = x21x2 = 11x2

Solved example 13.20
Find the derivative of f(x) from the first principle, where f(x) is
(i) sin x + cos x     (ii) x sin x
Solution:
Part (i):
f(x) = limh0[f(x+h)f(x)h] = limh0[[sin(x+h)+cos(x+h)]  [sinx+cosx]h] = limh0[sin(x+h)+cos(x+h)sinxcosxh] = limh0[sin(x+h)+cos(x+h)sinxcosxh] = limh0[[sin(x+h)sinx]+[cos(x+h)cosx]h] = limh0[[2cos2x+h2sinh2]+[2sin2x+h2sinh2]h] - - - I = limh0[2sinh2[cos2x+h2  sin2x+h2]h] = limh0[sinh2h/2] × limh0[cos2x+h2  sin2x+h2] = 1 × [cos2x+02  sin2x+02] = 1 × [cosx  sinx] = cosx  sinx

◼ Remarks:
• Line marked as I:
Here we use the following identities:
    ♦ sin A - sin B = 2 cos (A+B)/2 sin (A-B)/2
    ♦ cos A - cos B = -2 sin (A+B)/2 sin (A-B)/2

Part (ii):
f(x) = limh0[f(x+h)f(x)h] = limh0[(x+h)sin(x+h)  xsinxh] = limh0[xsin(x+h)+hsin(x+h)xsinxh] = limh0[x[sin(x+h)sinx]+hsin(x+h)h] = limh0[x[2cos2x+h2sinh2]+hsin(x+h)h] - - - I = limh0[2xcos2x+h2sinh2h] + limh0[hsin(x+h)h] = [limh0[xcos2x+h2] × limh0[sinh2h/2]] + limh0[sin(x+h)] = [[xcos2x+02] × 1] + [sin(x+0)] = xcosx+sinx

◼ Remarks:
• Line marked as I:
Here we use the following identity:
    ♦ sin A - sin B = 2 cos (A+B)/2 sin (A-B)/2

Solved example 13.21
Compute the derivative of
(i) f(x) = sin 2x  (ii) g(x) = cot x
Solution:
Part (i):
f(x) = (sin2x) = (2sinxcosx) = (2sinx)(cosx) + (2sinx)(cosx)- - - I = (2sinx)(cosx) + (2sinx)(sinx) = (2sinx)(cosx)  2sin2x = [(2)sinx + (2)(sinx)]cosx  2sin2x = [0×sinx + (2)(cosx)]cosx  2sin2x = [2cosx]cosx  2sin2x = 2cos2x  2sin2x = 2(cos2xsin2x)

◼ Remarks:
• Line marked as I:
Here we use the product rule: (uv)' = u'v + uv'

Part (ii):
• Here we want to find the derivative of cot x.
• This is already done before.
• See question number 11(v) of Exercise 13.2.

Solved example 13.22
Find the derivative of
(i) x5cosxsinx  (ii) x+cosxtanx
Solution:
Part (i):
1. Here we can use quotient rule:
(uv)=uvuvu2
• In our present case,
   ♦ u = x5 - cos x
   ♦ v = sin x
2. Thus we get:
f(x) = [(x5cosx)sinx]  [(x5cosx)(sinx)]sin2x = [(5x4+sinx)sinx]  [(x5cosx)(cosx)]sin2x = [5x4sinx+sin2x]  [x5cosxcos2x]sin2x = 5x4sinx+sin2xx5cosx+cos2xsin2x = 5x4sinxx5cosx+1sin2x = x5cosx+5x4sinx+1sin2x

Part (ii):
1. Here we can use quotient rule:
(uv)=uvuvu2
• In our present case,
   ♦ u = x + cos x
   ♦ v = tan x
2. Thus we get:
f(x) = [(x+cosx)tanx]  [(x+cosx)(tanx)]tan2x = [(1sinx)tanx]  [(x+cosx)(sec2x)]tan2x


Link to a few more miscellaneous examples is given below:

Miscellaneous Exercise on chapter 13


In the next chapter, we will see mathematical reasoning.

Previous

Contents

Next

Copyright©2023 Higher secondary mathematics.blogspot.com

No comments:

Post a Comment