In the previous section, we completed a discussion on relations and functions. In this chapter, we will see trigonometric functions.
• We have seen the basics of trigonometry in our previous classes. Details here.
• We will start our present discussion by deriving some interesting trigonometric identities. They can be written in steps:
1. Fig.3.1 below shows a right triangle ABC
Fig.3.1 |
• The angle at A is xo
2. Applying Pythagoras theorem, we have: AB2 + BC2 = AC2
3. Dividing both sides by AC2, we get: AB2AC2+BC2AC2=AC2AC2
4. But ABAC is cos x. Also BCAC is sin x
• So we get: (cos x)2 + (sin x)2 = 1
5. Thus we get our first identity: cos2x + sin2x = 1
6. Consider again the result in (2).
Dividing both sides by BC2, we get: AB2BC2+BC2BC2=AC2BC2
7. But ABBC is cot x. Also ACBC is cosec x
• So we get: (cot x)2 + 1 = (cosec x)2
8. Thus we get our second identity: cot2x + 1 = cosec2x
9. Consider again the result in (2).
Dividing both sides by AB2, we get: AB2AB2+BC2AB2=AC2AB2
10. But BCAB is tan x. Also ACAB is sec x
• So we get: 1 + (tan x)2 = (sec x)2
11. Thus we get our third identity: 1 + tan2x = sec2x
Let us see some solved examples:
Solved example 3.1
Prove that (cscθ−cotθ)2=1−cosθ1+cosθ
Solution:
• Consider the RHS.
• Multiplying both numerator and denominator by (1 - cos 𝜃), we get:
RHS=(1−cosθ)(1−cosθ)(1+cosθ)(1−cosθ)⇒RHS=(1−cosθ)21−cos2θ=(1−cosθ)2sin2θ=1−2cosθ+cos2θsin2θ=1sin2θ−2cosθsin2θ+cos2θsin2θ=csc2θ−2cscθcotθ+cot2θ=(cscθ−cotθ)2=LHS
Solved example 3.2
Prove that: cosA1+sinA+1+sinAcosA=2secA
Solution:
• Consider the RHS.
• Multiplying both numerator and denominator by (1 - sin A), we get:
LHS=cosA(1−sinA)(1+sinA)(1−sinA)+(1+sinA)(1−sinA)cosA(1−sinA)⇒LHS=cosA(1−sinA)1−sin2A+1−sin2AcosA(1−sinA)=cosA(1−sinA)cos2A+cos2AcosA(1−sinA)=(1−sinA)cosA+cosA(1−sinA)=(1−sinA)2+cos2AcosA(1−sinA)=(1−2sinA+sin2A)+cos2AcosA(1−sinA)=1−2sinA+(sin2A+cos2A)cosA(1−sinA)=1−2sinA+1cosA(1−sinA)=2−2sinAcosA(1−sinA)=2(1−sinA)cosA(1−sinA)=2cosA=2secA=RHS
Solved example 3.3
Prove that tanθ1−cotθ+cotθ1−tanθ=1+secθcscθ
[Hint : Write the expression in terms of sin θ and cos θ]
Solution:
1. Consider the first term on LHS:
First term=tanθ1−cotθ=sinθcosθ1−cosθsinθ=sinθcosθsinθ−cosθsinθ=sinθcosθ×sinθsinθ−cosθ=sin2θcosθ(sinθ−cosθ)
2. Consider the second term of LHS:
Second term=cotθ1−tanθ=cosθsinθ1−sinθcosθ=cosθsinθcosθ−sinθcosθ=cosθsinθ×cosθcosθ−sinθ=cos2θsinθ(cosθ−sinθ)=−cos2θsinθ(sinθ−cosθ)
3.Adding (1) and (2), we get:
LHS=1(sinθ−cosθ)[sin2θcosθ−cos2θsinθ]=1(sinθ−cosθ)[sin3θ−cos3θsinθcosθ]=1(sinθ−cosθ)[(sinθ−cosθ)(sin2θ+sinθcosθ+cos2θ)sinθcosθ][∵
Link to some more solved examples is given below:
In
the next
section, we will see measurement of angles.
Previous
Contents
Next
Copyright©2021 Higher secondary mathematics.blogspot.com
No comments:
Post a Comment