Processing math: 94%

Tuesday, November 23, 2021

Chapter 3 - Trigonometric Functions

In the previous section, we completed a discussion on relations and functions. In this chapter, we will see trigonometric functions.

• We have seen the basics of trigonometry in our previous classes. Details here.
• We will start our present discussion by deriving some interesting trigonometric identities. They can be written in steps:

1. Fig.3.1 below shows a right triangle ABC

Basic trigonometric identities can be derived from a simple right angled triangle.
Fig.3.1

• The angle at A is xo
2. Applying Pythagoras theorem, we have: AB2 + BC2 = AC2
3. Dividing both sides by AC2, we get: AB2AC2+BC2AC2=AC2AC2
4. But ABAC is cos x. Also BCAC is sin x
• So we get: (cos x)2 + (sin x)2 = 1
5. Thus we get our first identity: cos2x + sin2x = 1
6. Consider again the result in (2).
Dividing both sides by BC2, we get: AB2BC2+BC2BC2=AC2BC2
7. But ABBC is cot x. Also ACBC is cosec x
• So we get: (cot x)2 + 1 = (cosec x)2
8. Thus we get our second identity: cot2x + 1 = cosec2x
9. Consider again the result in (2).
Dividing both sides by AB2, we get: AB2AB2+BC2AB2=AC2AB2
10. But BCAB is tan x. Also ACAB is sec x
• So we get: 1 + (tan x)2 = (sec x)2
11. Thus we get our third identity: 1 + tan2x = sec2x


Let us see some solved examples:

Solved example 3.1
Prove that (cscθcotθ)2=1cosθ1+cosθ
Solution:
• Consider the RHS.
• Multiplying both numerator and denominator by (1 - cos 𝜃), we get:
RHS=(1cosθ)(1cosθ)(1+cosθ)(1cosθ)RHS=(1cosθ)21cos2θ=(1cosθ)2sin2θ=12cosθ+cos2θsin2θ=1sin2θ2cosθsin2θ+cos2θsin2θ=csc2θ2cscθcotθ+cot2θ=(cscθcotθ)2=LHS

Solved example 3.2
Prove that: cosA1+sinA+1+sinAcosA=2secA
Solution:
• Consider the RHS.
• Multiplying both numerator and denominator by (1 - sin A), we get:
LHS=cosA(1sinA)(1+sinA)(1sinA)+(1+sinA)(1sinA)cosA(1sinA)LHS=cosA(1sinA)1sin2A+1sin2AcosA(1sinA)=cosA(1sinA)cos2A+cos2AcosA(1sinA)=(1sinA)cosA+cosA(1sinA)=(1sinA)2+cos2AcosA(1sinA)=(12sinA+sin2A)+cos2AcosA(1sinA)=12sinA+(sin2A+cos2A)cosA(1sinA)=12sinA+1cosA(1sinA)=22sinAcosA(1sinA)=2(1sinA)cosA(1sinA)=2cosA=2secA=RHS

Solved example 3.3
Prove that tanθ1cotθ+cotθ1tanθ=1+secθcscθ
[Hint : Write the expression in terms of sin θ and cos θ]
Solution:
1. Consider the first term on LHS:
First term=tanθ1cotθ=sinθcosθ1cosθsinθ=sinθcosθsinθcosθsinθ=sinθcosθ×sinθsinθcosθ=sin2θcosθ(sinθcosθ)
2. Consider the second term of LHS:
Second term=cotθ1tanθ=cosθsinθ1sinθcosθ=cosθsinθcosθsinθcosθ=cosθsinθ×cosθcosθsinθ=cos2θsinθ(cosθsinθ)=cos2θsinθ(sinθcosθ)
3.Adding (1) and (2), we get:
LHS=1(sinθcosθ)[sin2θcosθcos2θsinθ]=1(sinθcosθ)[sin3θcos3θsinθcosθ]=1(sinθcosθ)[(sinθcosθ)(sin2θ+sinθcosθ+cos2θ)sinθcosθ][


Link to some more solved examples is given below:

Solved examples 3.4 to 3.10


In the next section, we will see measurement of angles.

Previous

Contents

Next

Copyright©2021 Higher secondary mathematics.blogspot.com

No comments:

Post a Comment