Sunday, November 16, 2025

25.9 - Solved Examples on Solution of Homogeneous Differential Equations

In the previous section, we saw the method to solve homogeneous differential equations. We also saw some solved examples. In this section, we will see a few more solved examples. 

Solved example 25.52
Show that the differential equation $\boldsymbol{x \cos\left(\frac{y}{x} \right) \,\frac{dy}{dx}~=~y \cos \left(\frac{y}{x} \right)~+~x}$ is homogeneous and solve it.
Solution
:
Part I: Showing that the given differential equation is homogeneous
1. We can rearrange the given differential equation as:
$\small{\frac{dy}{dx}~=~\frac{y \cos \left(\frac{y}{x} \right)~+~x}{x \cos\left(\frac{y}{x} \right)}}$

2. Let $\small{F(x,y)~=~\frac{y \cos \left(\frac{y}{x} \right)~+~x}{x \cos\left(\frac{y}{x} \right)}}$
• We need to show that, this is a homogeneous function of degree zero.

3. Dividing both numerator and denominator by x, we get:

$\small{F(x,y)~=~\frac{\left(\frac{y}{x} \right) \cos \left(\frac{y}{x} \right)~+~1}{\cos\left(\frac{y}{x} \right)}~=~x^0\left[g\left(\frac{y}{x} \right) \right]}$

• Here, $\boldsymbol{g\left(\frac{y}{x} \right) ~=~\frac{\left(\frac{y}{x} \right) \cos \left(\frac{y}{x} \right)~+~1}{\cos\left(\frac{y}{x} \right)}}$

4. We see that:
For the function $\small{F(x,y)}$, it is possible to write:
$\small{F(x,y)~=~x^n\left[g\left(\frac{y}{x} \right) \right]}$
   ♦ Where n is a natural number.
• So it is a homogeneous function.

• For this function, n = 0. So degree is zero.
• So the given differential equation is homogeneous.

Part II: Solving the differential equation
1. We make the substitution: $\small{\frac{y}{x}~=~v}$
Which is same as: $\small{y~=~vx}$

2. Differentiating the above equation with respect to x, we get:
$\small{\frac{dy}{dx}~=~v~+~x \frac{dv}{dx}}$

3. Substituting (1) and (2) in the given differential equation, we get:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{\frac{dy}{dx}}    & {~=~}    &{\frac{\left(\frac{y}{x} \right) \cos \left(\frac{y}{x} \right)~+~1}{\cos\left(\frac{y}{x} \right)}}    \\
{~\color{magenta}    2    }    &{{\Rightarrow}}    &{v~+~x \frac{dv}{dx}}    & {~=~}    &{\frac{\left(v \right) \cos \left(v \right)~+~1}{\cos\left(v \right)}}    \\
{~\color{magenta}    3    }    &{{\Rightarrow}}    &{x \frac{dv}{dx}}    & {~=~}    &{\frac{v \cos \left(v \right)~+~1}{\cos\left(v \right)}~-~v}    \\
{~\color{magenta}    4    }    &{{\Rightarrow}}    &{x \frac{dv}{dx}}    & {~=~}    &{\frac{v \cos \left(v \right)~+~1~-~v \cos\left(v \right)}{\cos\left(v \right)}}    \\
{~\color{magenta}    5    }    &{{\Rightarrow}}    &{x \frac{dv}{dx}}    & {~=~}    &{\frac{1}{\cos v}}    \\
{~\color{magenta}    6    }    &{{\Rightarrow}}    &{\left[\cos v \right]dv}    & {~=~}    &{\frac{dx}{x}}    \\
\end{array}}$

4. So we have separated the variables. Integrating both sides, we get:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}&{\int{\left[\cos v \right]dv}}    & {~=~}    &{\int{\left[\frac{1}{x} \right]dx}}    \\
{~\color{magenta}    2    }&{{\Rightarrow}}    &{\sin v~+~\rm{C}_1}    & {~=~}&{\log \left|x \right|~+~\rm{C}_2}    \\
{~\color{magenta} 3    }&{{\Rightarrow}}    &{\sin v}    & {~=~}&{\log \left|x \right|~+~\rm{C}_3}    \\
\end{array}}$

5. Replacing 'v', we will get the general solution:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}&{\sin v}    & {~=~}    &{\log \left|x \right|~+~\rm{C}_3}    \\
{~\color{magenta}    2    }&{{\Rightarrow}}&{\sin\left(\frac{y}{x} \right)}    & {~=~}    &{\log \left|x \right|~+~\log \left|\rm{C} \right|}    \\
{~\color{magenta}    3    }&{{\Rightarrow}}&{\sin\left(\frac{y}{x} \right)}    & {~=~}    &{\log \left|\rm{C}\,x \right|}    \\
\end{array}}$

Solved example 25.53
Show that the differential equation $\boldsymbol{x \, \frac{dy}{dx}~-~y~+~x \sin \left(\frac{y}{x} \right)~=~0}$ is homogeneous and solve it.
Solution
:
Part I: Showing that the given differential equation is homogeneous

1. We can rearrange the given differential equation as:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{x \, \frac{dy}{dx}~-~y~+~x \sin \left(\frac{y}{x} \right)}    & {~=~}    &{0}    \\
{~\color{magenta}    2    }    &{{\Rightarrow}}    &{x \, \frac{dy}{dx}}    & {~=~}    &{y~-~x \sin \left(\frac{y}{x} \right)}    \\
{~\color{magenta}    3    }    &{{\Rightarrow}}    &{ \frac{dy}{dx}}    & {~=~}    &{\frac{y~-~x \sin \left(\frac{y}{x} \right)}{x}}    \\
\end{array}}$

2. Let $\small{F(x,y)~=~\frac{y~-~x \sin \left(\frac{y}{x} \right)}{x}}$
• We need to show that, this is a homogeneous function of degree zero.

3. Dividing both numerator and denominator by x, we get:

$\small{F(x,y)~=~\frac{\left(\frac{y}{x} \right)~-~ \sin \left(\frac{y}{x} \right)}{1}~=~x^0\left[g\left(\frac{y}{x} \right) \right]}$

• Here, $\boldsymbol{g\left(\frac{y}{x} \right) ~=~\left(\frac{y}{x} \right)~-~ \sin \left(\frac{y}{x} \right)}$

4. We see that:
For the function $\small{F(x,y)}$, it is possible to write:
$\small{F(x,y)~=~x^n\left[g\left(\frac{y}{x} \right) \right]}$
   ♦ Where n is a natural number.
• So it is a homogeneous function.

• For this function, n = 0. So degree is zero.
• So the given differential equation is homogeneous.

Part II: Solving the differential equation
1. We make the substitution: $\small{\frac{y}{x}~=~v}$
Which is same as: $\small{y~=~vx}$

2. Differentiating the above equation with respect to x, we get:
$\small{\frac{dy}{dx}~=~v~+~x \frac{dv}{dx}}$

3. Substituting (1) and (2) in the given differential equation, we get:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{\frac{dy}{dx}}    & {~=~}    &{\left(\frac{y}{x} \right)~-~ \sin \left(\frac{y}{x} \right)}    \\
{~\color{magenta}    2    }    &{{\Rightarrow}}    &{v~+~x \frac{dv}{dx}}    & {~=~}    &{v~-~\sin v}    \\
{~\color{magenta}    3    }    &{{\Rightarrow}}    &{x \frac{dv}{dx}}    & {~=~}    &{-\sin v}    \\
{~\color{magenta}    4    }    &{{\Rightarrow}}    &{\left[\frac{1}{\sin v} \right]dv}    & {~=~}    &{-\frac{dx}{x}}    \\
\end{array}}$

4. So we have separated the variables. Integrating both sides, we get:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}&{\int{\left[\frac{1}{\sin v} \right]dv}}    & {~=~}    &{(-1)\int{\left[\frac{1}{x} \right]dx}}    \\
{~\color{magenta}    2    }&{{\Rightarrow}}    &{\log \left|\csc v~-~\cot v \right|~+~\rm{C}_1}    & {~=~}&{(-1)\log \left|x \right|~+~\rm{C}_2}    \\
{~\color{magenta} 3    }&{{\Rightarrow}}    &{\log \left|\csc v~-~\cot v \right|~+~\log \left|x \right|}    & {~=~}&{\rm{C}_2~-~\rm{C}_1}    \\
{~\color{magenta} 4    }&{{\Rightarrow}}    &{\log \left|\csc v~-~\cot v \right|~+~\log \left|x \right|}    & {~=~}&{\rm{C}_3}    \\
{~\color{magenta} 5    }&{{\Rightarrow}}    &{\log \left|(\csc v~-~\cot v)x  \right|}    & {~=~}&{\rm{C}_3}    \\
{~\color{magenta} 6    }&{{\Rightarrow}}    &{(\csc v~-~\cot v)x}    & {~=~}&{e^{\rm{C}_3}~=~\rm{C}}    \\
{~\color{magenta} 7    }&{{\Rightarrow}}    &{\frac{x(1~-~\cos v)}{\sin v}}    & {~=~}&{e^{\rm{C}_3}~=~\rm{C}}    \\
\end{array}}$

5. Replacing 'v', we will get the general solution:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}&{\frac{x(1~-~\cos v)}{\sin v}}    & {~=~}    &{\rm{C}}    \\
{~\color{magenta}    2    }&{{\Rightarrow}}&{\frac{x\left[1~-~\cos \left(\frac{y}{x} \right) \right]}{\sin \left(\frac{y}{x} \right)}}    & {~=~}    &{\rm{C}}    \\
{~\color{magenta}    3    }&{{\Rightarrow}}&{x\left[1~-~\cos \left(\frac{y}{x} \right) \right]}    & {~=~}    &{\rm{C}\sin\left(\frac{y}{x} \right)}    \\
\end{array}}$

Solved example 25.54
Show that the differential equation $\boldsymbol{2y e^{x/y} dx~+~\left(y\,-\,2x e^{x/y} \right)dy~=~0}$ is homogeneous and find it's particular solution, given that, x = 0 when y = 1.
Solution
:
Part I: Showing that the given differential equation is homogeneous

1. We can rearrange the given differential equation as:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{2y e^{x/y} dx~+~\left(y\,-\,2x e^{x/y} \right)dy}    & {~=~}    &{0}    \\
{~\color{magenta}    2    }    &{{\Rightarrow}}    &{2y e^{x/y} dx}    & {~=~}    &{(-1)\left(y\,-\,2x e^{x/y} \right)dy}    \\
{~\color{magenta}    3    }    &{{\Rightarrow}}    &{2y e^{x/y} dx}    & {~=~}    &{\left(2x e^{x/y}\,-\,y \right)dy}    \\
{~\color{magenta}    4    }    &{{\Rightarrow}}    &{\frac{dx}{dy}}    & {~=~}    &{\frac{2x e^{x/y}\,-\,y }{2y e^{x/y}}}    \\
\end{array}}$

• Here we write $\small{\frac{dx}{dy}}$ instead of $\small{\frac{dy}{dx}}$ because, the given differential equation involves $\small{x/y}$.

2. Let $\small{F(x,y)~=~\frac{2x e^{x/y}\,-\,y }{2y e^{x/y}}}$
• We need to show that, this is a homogeneous function of degree zero.

3. Dividing both numerator and denominator by y, we get:

$\small{F(x,y)~=~\frac{2(x/y) e^{x/y}\,-\,1 }{2 e^{x/y}}~=~y^0\left[h\left(\frac{x}{y} \right) \right]}$

• Here, $\boldsymbol{h\left(\frac{x}{y} \right) ~=~\frac{2(x/y) e^{x/y}\,-\,1 }{2 e^{x/y}}}$

4. We see that:
For the function $\small{F(x,y)}$, it is possible to write:
$\small{F(x,y)~=~y^n\left[h\left(\frac{x}{y} \right) \right]}$
   ♦ Where n is a natural number.
• So it is a homogeneous function.

• For this function, n = 0. So degree is zero.
• So the given differential equation is homogeneous.

Part II: Solving the differential equation
1. We make the substitution: $\small{\frac{x}{y}~=~u}$
Which is same as: $\small{x~=~uy}$

2. Differentiating the above equation with respect to y, we get:
$\small{\frac{dx}{dy}~=~u~+~y \frac{du}{dy}}$

3. Substituting (1) and (2) in the given differential equation, we get:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{\frac{dx}{dy}}    & {~=~}    &{\frac{2(x/y) e^{x/y}\,-\,1 }{2 e^{x/y}}}    \\
{~\color{magenta}    2    }    &{{\Rightarrow}}    &{u~+~y \frac{du}{dy}}    & {~=~}    &{\frac{2(u) e^{u}\,-\,1 }{2 e^{u}}}    \\
{~\color{magenta}    3    }    &{{\Rightarrow}}    &{u~+~y \frac{du}{dy}}    & {~=~}    &{u~-~\frac{1 }{2 e^{u}}}    \\
{~\color{magenta}    4    }    &{{\Rightarrow}}    &{y \frac{du}{dy}}    & {~=~}    &{-\frac{1 }{2 e^{u}}}    \\
{~\color{magenta}    5    }    &{{\Rightarrow}}    &{2 e^u\,du}    & {~=~}    &{-\frac{1 }{y}dy}    \\
\end{array}}$

4. So we have separated the variables. Integrating both sides, we get:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}&{\int{\left[2 e^u \right]du}}    & {~=~}    &{(-1)\int{\left[\frac{1}{y} \right]dy}}    \\
{~\color{magenta}    2    }&{{\Rightarrow}}    &{2 e^u~+~\rm{C}_1}    & {~=~}&{(-1)\log \left|y \right|~+~\rm{C}_2}    \\
{~\color{magenta} 3    }&{{\Rightarrow}}    &{2 e^u~+~\log \left|y \right|}    & {~=~}&{\rm{C}_2~-~\rm{C}_1}    \\
{~\color{magenta} 4    }&{{\Rightarrow}}    &{2 e^u~+~\log \left|y \right|}    & {~=~}&{\rm{C}}    \\
\end{array}}$

5. Replacing 'u', we will get the general solution:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}&{2 e^u~+~\log \left|y \right|}    & {~=~}    &{\rm{C}}    \\
{~\color{magenta}    2    }&{{\Rightarrow}}&{2 e^{(x/y)}~+~\log \left|y \right|}    & {~=~}    &{\rm{C}}    \\
\end{array}}$

Part III: To find the particular solution
1. Given that, x = 0 when y = 1.

2. Substituting in the general solution, we get:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}&{2 e^{(x/y)}~+~\log \left|y \right|}    & {~=~}    &{\rm{C}}    \\
{~\color{magenta}    2    }&{{\Rightarrow}}&{2 e^{(0/1)}~+~\log \left(1 \right)}    & {~=~}    &{\rm{C}}    \\
{~\color{magenta}    3    }&{{\Rightarrow}}&{2 e^{(0)}~+~0}    & {~=~}    &{\rm{C}}    \\
{~\color{magenta}    4    }&{{\Rightarrow}}&{2 (1)~+~0}    & {~=~}    &{\rm{C}}    \\
{~\color{magenta}    5    }&{{\Rightarrow}}&{2}    & {~=~}    &{\rm{C}}    \\
\end{array}}$

3. So based on the result from part II, we get the particular solution as:

$\boldsymbol{2 e^{(x/y)}~+~\log \left|y \right|~=~2}$

Solved example 25.55
Show that the family of curves for which the slope of the tangent at any point (x,y) on it is $\boldsymbol{\frac{x^2 + y^2}{2xy}}$, is  given by $\boldsymbol{x^2 ~-~y^2~=~cx}$.
Solution
:
Part I: Finding the differential equation
1. We know that, the slope is same as the derivative $\small{\frac{dy}{dx}}$.

2. So based on the given information, we can write:
$\small{\frac{dy}{dx}~=~\frac{x^2 + y^2}{2xy}}$
• This is the required differential equation.

Part II: Showing that the differential equation is homogeneous

1. We have the  differential equation:
$\small{\frac{dy}{dx}~=~\frac{x^2 + y^2}{2xy}}$

2. Let $\small{F(x,y)~=~\frac{x^2 + y^2}{2xy}}$
• We need to show that, this is a homogeneous function of degree zero.

3. Dividing both numerator and denominator by $\small{x^2}$, we get:

$\small{F(x,y)~=~\frac{1 + \frac{y^2}{x^2}}{2\left(\frac{y}{x} \right)}~=~x^0\left[g\left(\frac{y}{x} \right) \right]}$

• Here, $\boldsymbol{g\left(\frac{y}{x} \right) ~=~\frac{1 + \left(\frac{y}{x} \right)^2}{2\left(\frac{y}{x} \right)}}$

4. We see that:
For the function $\small{F(x,y)}$, it is possible to write:
$\small{F(x,y)~=~x^n\left[g\left(\frac{y}{x} \right) \right]}$
   ♦ Where n is a natural number.
• So it is a homogeneous function.

• For this function, n = 0. So degree is zero.

• So the given differential equation is homogeneous.

Part III: Solving the differential equation
1. We make the substitution: $\small{\frac{y}{x}~=~v}$
Which is same as: $\small{y~=~vx}$

2. Differentiating the above equation with respect to x, we get:
$\small{\frac{dy}{dx}~=~v~+~x \frac{dv}{dx}}$

3. Substituting (1) and (2) in the given differential equation, we get:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}    &{\frac{dy}{dx}}    & {~=~}    &{\frac{1 + \left(\frac{y}{x} \right)^2}{2\left(\frac{y}{x} \right)}}    \\
{~\color{magenta}    2    }    &{{\Rightarrow}}    &{v~+~x \frac{dv}{dx}}    & {~=~}    &{\frac{1 + \left(v \right)^2}{2\left(v \right)}~=~\frac{1}{2v}~+~\frac{v}{2}}    \\
{~\color{magenta}    3    }    &{{\Rightarrow}}    &{x \frac{dv}{dx}}    & {~=~}    &{\frac{1}{2v}~-~\frac{v}{2}~=~\frac{1}{2}\left[\frac{1}{v}~-~v \right]}    \\
{~\color{magenta}    4    }    &{{\Rightarrow}}    &{ \frac{dv}{\frac{1}{v}~-~v }}    & {~=~}    &{\frac{dx}{2x}}    \\
{~\color{magenta}    5    }    &{{\Rightarrow}}    &{\left[ \frac{1}{\frac{1}{v}~-~v } \right]dv}    & {~=~}    &{\left[ \frac{1}{2x } \right]dx}    \\
{~\color{magenta}    6    }    &{{\Rightarrow}}    &{\left[\frac{v}{1~-~v^2 } \right]dv}    & {~=~}    &{\left[ \frac{1}{2x } \right]dx}    \\
\end{array}}$

4. So we have separated the variables. Integrating both sides, we get:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}&{\int{\left[\frac{v}{1~-~v^2 } \right]dv}}    & {~=~}    &{\int{\left[\frac{1}{2x} \right]dx}}    \\
{~\color{magenta}    2    }&{{\Rightarrow}}    &{(-1)\left(\frac{1}{2} \right)\log \left|(1 - v^2) \right|~+~\rm{C}_1}    & {~=~}&{\left(\frac{1}{2} \right)\log \left|x \right|~+~\rm{C}_2}    \\
{~\color{magenta}    3    }&{{\Rightarrow}}    &{(-1)\log \left|(1 - v^2) \right|~+~2\rm{C}_1}    & {~=~}&{\log \left|x \right|~+~2\rm{C}_2}    \\
{~\color{magenta} 4    }&{{\Rightarrow}}    &{\log \left|x \right|~+~\log \left|(1 - v^2) \right|}    & {~=~}&{2\rm{C}_1~-~2\rm{C}_2}    \\
{~\color{magenta} 5    }&{{\Rightarrow}}    &{\log \left|x(1 - v^2) \right|}    & {~=~}&{\rm{C}_3}    \\
{~\color{magenta} 6    }&{{\Rightarrow}}    &{\log \left|x(1 - v^2) \right|}    & {~=~}&{\log \left|\rm{C}_4 \right|}    \\
{~\color{magenta} 7    }&{{\Rightarrow}}    &{x(1 - v^2)}    & {~=~}&{\pm\rm{C}_4}    \\
\end{array}}$

5. Replacing 'v', we will get the general solution:

$\small{\begin{array}{ll} {~\color{magenta}    1    }    &{{}}&{x(1 - v^2)}    & {~=~}    &{\pm \rm{C}_4}    \\
{~\color{magenta}    2    }&{{\Rightarrow}}&{x\left(1 - \frac{y^2}{x^2}\right) }    & {~=~}    &{\pm \rm{C}_4}    \\
{~\color{magenta}    3    }&{{\Rightarrow}}&{\frac{x^2~-~y^2}{x}}    & {~=~}    &{\pm \rm{C}_4}    \\
{~\color{magenta}    4    }&{{\Rightarrow}}&{x^2~-~y^2}    & {~=~}    &{{\rm{C}}\,x}    \\
\end{array}}$


The link below gives a few more solved examples:

Exercise 9.5


In the next section, we will see linear differential equations.

Previous

Contents

Next 

Copyright©2025 Higher secondary mathematics.blogspot.com

 

No comments:

Post a Comment