Thursday, February 13, 2025

23.5 - Solved Examples on Integration by Substitution

In the previous section, we saw some standard integrals of trigonometric functions. We saw some solved examples also. In this section, we will see a few more solved examples.

Solved example 23.7
Find the following integrals:
(i) [(4x+2)x2+x+1]dx

(ii) [11tanx]dx

(iii) [11+cotx]dx

(iv) [1x+xlogx]dx

Solution:
Part (i):
1. The derivative of (x2+x+1) is 2x+1.
• So we put u = x2+x+1
dudx = 2x+1
⇒ (2x+1)dx = du

2. So we want:
[(4x+2)x2+x+1]dx = [2u]du

• This integration can be done as shown below:

 1[2u]du = 2[u3/23/2 + C1] = 4u3/23 + C2 2 = 4(x2+x+1)3/23 + C

• Note that, the constants C1, C2 etc., can be combined into a single constant C because, all constants, when differentiated, will give zero only.

Part (ii):
1. The given expression can be rearranged as follows:

 111tanx = 11(sinx/cosx) 2 = cosxcosxsinx 3 = cosxsin(π/2x)sinx 4 = cosx2cos(π/4)sin(π/4x) 5 = cosx2sin(π/4x)                           

• Derivative of (π/4 − x) w.r.t x is −1.
• So we put u = (π/4 −x)
dudx = 1
⇒ −dx = du
• Also, since u = (π/4 −x), we get: x = π/4 − u
2. So we want:

 1[(1)(1)cosx2sin(π/4x)]dx = [cos(π/4u)2sinu]du 2 = [cos(π/4)cosu  sin(π/4)sinu2sinu]du 3 = [(1/2)cosu  (1/2)sinu2sinu]du 4 = [(1/2)cotu  (1/2)2]du 5 = [(1/2)(cotu + 1)2]du 6 = [(1 + cotu)2]du

• This integration can be done as shown below:

 1[1  cotu2]du = [12]du  [cotu2]du 2 = 12[1]du  12[cotu]du 3 = 12[u+C1]  12[log|sinu|+C2] 4 = 12[(π/4)x+C1]  12[log|sin((π/4)x)|+C2] 5 = 12[x(π/4)C1] + 12[log|sin((π/4)x)|C2] 6 = 12[x+C3] + 12[log|sin((π/4)x)|+C4] 7 = 12[x+C3] + 12[log|sin(π/4)cosx  cos(π/4)sinx|+C4] 8 = 12[x+C3] + 12[log|(1/2)cosx  (1/2)sinx|+C4] 9 = 12[x+C3] + 12[log|(1/2)(cosx  sinx)|+C4] 10 = 12[x+C3] + 12[log(1/2)  log|(cosx  sinx)|+C4] 11 = 12[x+C3] + 12[log|(cosx  sinx)|+C5] 12 = x2+C32  log|(cosx  sinx)|2+C52 13 = x2log|(cosx  sinx)|2+C                            
                           

• Note that, the constants C1, C2, C3 etc., can be combined into a single constant C because, all constants, when differentiated, will give zero only.

Part (iii):
1. The given expression can be rearranged as follows:

 111+cotx = 11+(cosx/sinx) 2 = sinxsinx+cosx 3 = sinxcos(π/2x)+cosx 4 = sinx2cos(π/4)cos(π/4x) 5 = sinx2cos(π/4x)                           

• Derivative of (π/4 −x) w.r.t x is −1.
• So we put u = (π/4 −x)
dudx = 1
⇒ −dx = du
• Also, since u = (π/4 −x), we get: x = π/4 − u
2. So we want:

 1[(1)(1)sinx2cos(π/4x)]dx = [sin(π/4u)2cosu]du 2 = [sin(π/4)cosu + cos(π/4)sinu2cosu]du 3 = [(1/2)cosu + (1/2)sinu2cosu]du 4 = [(1/2) + (1/2)tanu2]du 5 = [(1/2)(1  tanu)2]du 6 = [(1  tanu)2]du

• This integration can be done as shown below:

 1[1 + tanu2]du = [12]du + [tanu2]du 2 = 12[1]du + 12[tanu]du 3 = 12[u+C1] + 12[log|cosu|+C2] 4 = 12[(π/4)x+C1] + 12[log|cos((π/4)x)|+C2] 5 = 12[x(π/4)C1] + 12[log|cos((π/4)x)|+C2] 6 = 12[x+C3] + 12[log|cos((π/4)x)|+C2] 7 = 12[x+C3] + 12[log|cos(π/4)cosx + sin(π/4)sinx|+C2] 8 = 12[x+C3] + 12[log|(1/2)cosx + (1/2)sinx|+C2] 9 = 12[x+C3] + 12[log|(1/2)(cosx + sinx)|+C2] 10 = 12[x+C3] + 12[log(1/2)  log|(cosx  sinx)|+C2] 11 = 12[x+C3] + 12[log|(cosx + sinx)|+C4] 12 = x2+C32  log|(cosx + sinx)|2+C42 13 = x2log|(cosx + sinx)|2+C                           
                           

• Note that, the constants C1, C2, C3 etc., can be combined into a single constant C because, all constants, when differentiated, will give zero only.

Part (iv):
1. The given expression can be rearranged as follows:
1x+xlogx = 1x(1+logx)                     

• Derivative of (1+log x) w.r.t x is: (0+1/x) = 1/x.
• So we put u = 1+ log x
dudx = 1x
du = 1xdx

2. So we want:

 1[1x+xlogx]dx = [1x(1+logx)]dx 2 = [1u]du

• This integration can be done as shown below:

 1[1u]du = [1x(1+logx)]dx 2 = [1u]du 3 = log|(1+logx)| + C


The link below gives a few more solved examples:

Exercise 23.2


In the next section, we will see a few more solved examples.

Previous

Contents

Next

Copyright©2025 Higher secondary mathematics.blogspot.com

No comments:

Post a Comment