In the previous section, we saw the fundamental theorem of calculus. We saw some solved examples also. In this section, we will see a few more solved examples.
Solved Example 23.82
Evaluate the definite integral $\small{\int_{\frac{\pi}{6}}^{\frac{\pi}{4}}{\left[\csc(x) \right]dx}}$
Solution:
1. Let $\small{I~=~\int_{\frac{\pi}{6}}^{\frac{\pi}{4}}{\left[\csc(x) \right]dx}}$
• First we find the indefinite integral F.
We have:
$\small{F~=~\int{\left[\csc(x) \right]dx}~=~\log \left| \csc (x)~-~\cot (x)\right|}$
2. Therefore, by the second fundamental theorem of calculus, we get:
$\small{I~=~F(\frac{\pi}{6})\,-\,F(\frac{\pi}{4})~=~\left[\log
\left| \csc (x)~-~\cot (x)\right|
\right]_{\frac{\pi}{6}}^{\frac{\pi}{4}}}$
$\small{~=~\left[\log
\left| \csc (\frac{\pi}{4})~-~\cot (\frac{\pi}{4})\right|
\right]~-~\left[\log \left| \csc (\frac{\pi}{6})~-~\cot
(\frac{\pi}{6})\right| \right]}$
$\small{~=~\left[\log
\left|\sqrt{2}-1 \right| \right]~-~\left[\log \left|2 - \sqrt 3 \right|
\right]~=~\log \left|\frac{\sqrt 2 - 1}{2 - \sqrt 3} \right|}$
3. The required definite integral is equal to the area of the blue region in fig.23.20 below:
![]() |
Fig.23.20 |
Solved Example 23.83
Evaluate the definite integral $\small{\int_{0}^{1}{\left[\frac{1}{\sqrt{1-x^2}} \right]dx}}$
Solution:
1. Let $\small{I~=~\int_{0}^{1}{\left[\frac{1}{\sqrt{1-x^2}} \right]dx}}$
• First we find the indefinite integral F.
We have:
$\small{F~=~\int{\left[\frac{1}{\sqrt{1-x^2}} \right]dx}~=~\sin^{-1}x}$
2. Therefore, by the second fundamental theorem of calculus, we get:
$\small{I~=~F(1)\,-\,F(0)~=~\left[\sin^{-1}x \right]_{0}^{1}}$
$\small{~=~\left[\sin^{-1}(1) \right]~-~\left[\sin^{-1}(0) \right]~=~\frac{\pi}{2}~-~0}$
$\small{~=~\frac{\pi}{2}}$
3. The required definite integral is equal to the area of the blue region in fig.23.21 below:
![]() |
Fig.23.21 |
Solved Example 23.84
Evaluate the definite integral $\small{\int_{0}^{1}{\left[\frac{1}{1+x^2} \right]dx}}$
Solution:
1. Let $\small{I~=~\int_{0}^{1}{\left[\frac{1}{1+x^2} \right]dx}}$
• First we find the indefinite integral F.
We have:
$\small{F~=~\int{\left[\frac{1}{1+x^2} \right]dx}~=~\tan^{-1}x}$
2. Therefore, by the second fundamental theorem of calculus, we get:
$\small{I~=~F(1)\,-\,F(0)~=~\left[\tan^{-1}x \right]_{0}^{1}}$
$\small{~=~\left[\tan^{-1}(1) \right]~-~\left[\tan^{-1}(0) \right]~=~\frac{\pi}{4}~-~0}$
$\small{~=~\frac{\pi}{4}}$
3. The required definite integral is equal to the area of the blue region in fig.23.22 below:
![]() |
Fig.23.22 |
Solved Example 23.85
Evaluate the definite integral $\small{\int_{0}^{1}{\left[\frac{1}{x^2 - 1} \right]dx}}$
Solution:
1. Let $\small{I~=~\int_{2}^{3}{\left[\frac{1}{x^2 - 1} \right]dx}}$
• First we find the indefinite integral F.
We have:
$\small{\int{\left[\frac{1}{x^2 - a^2} \right]dx}~=~\frac{1}{2a} \log \left| \frac{x-a}{x+a} \right|}$
So we get:
$\small{F~=~\int{\left[\frac{1}{x^2 - 1} \right]dx}~=~\frac{1}{2(1)} \log \left| \frac{x-1}{x+1} \right|}$
2. Therefore, by the second fundamental theorem of calculus, we get:
$\small{I~=~F(3)\,-\,F(2)~=~\left[\frac{1}{2} \log \left| \frac{x-1}{x+1} \right| \right]_{2}^{3}}$
$\small{~=~\left[\frac{1}{2} \log \left| \frac{3-1}{3+1} \right| \right]~-~\left[\frac{1}{2} \log \left| \frac{2-1}{2+1} \right| \right]}$
$\small{~=~\left[\frac{1}{2} \log \left| \frac{2}{4} \right| \right]~-~\left[\frac{1}{2} \log \left| \frac{1}{3} \right| \right]}$
$\small{~=~\frac{1}{2} \left[ \log \left| \frac{1}{2} \right|~-~\log \left| \frac{1}{3} \right| \right]}$
$\small{~=~\frac{1}{2} \left[ \log \left| \frac{1/2}{1/3} \right| \right]}$
$\small{~=~\frac{1}{2} \left[ \log \left( \frac{3}{2} \right) \right]}$
3. The required definite integral is equal to the area of the blue region in fig.23.23 below:
![]() |
Fig.23.23 |
Solved example 23.86
Evaluate the following integrals:
$\small{\text{(i)}~\int_{2}^{3}{\left[x^2 \right]dx}~~~~~~~\text{(ii)}~\int_{4}^{9}{\left[\frac{\sqrt x}{\left(30 - x^{\frac{3}{2}} \right)^2} \right]dx}}$
$\small{\text{(iii)}~\int_{1}^{2}{\left[\frac{x}{(x+1)(x+2)} \right]dx}~~~~~~~\text{(iv)}~\int_{0}^{\frac{\pi}{4}}{\left[\sin^3(2t) \cos(2t) \right]dt}}$
Solution:
Part (i): $\small{\int_{2}^{3}{\left[x^2 \right]dx}}$
1. Let $\small{I~=~\int_{2}^{3}{\left[x^2 \right]dx}}$
• First we find the indefinite integral F.
We have:
$\small{\int{\left[x^2 \right]dx}~=~\frac{x^3}{3}}$
2. Therefore, by the second fundamental theorem of calculus, we get:
$\small{I~=~F(3)\,-\,F(2)~=~\left[\frac{x^3}{3} \right]_{2}^{3}}$
$\small{~=~\left[\frac{3^3}{3}\right]~-~\left[\frac{2^3}{3} \right]}$
$\small{~=~\left[\frac{27}{3} \right]~-~\left[\frac{8}{3} \right]~=~\frac{19}{3}}$
Part (ii): $\small{\int_{4}^{9}{\left[\frac{\sqrt x}{\left(30 - x^{\frac{3}{2}} \right)^2} \right]dx}}$
1. Let $\small{I~=~\int_{4}^{9}{\left[\frac{\sqrt x}{\left(30 - x^{\frac{3}{2}} \right)^2} \right]dx}}$
• First we find the indefinite integral F.
Let $\small{u = 30 - x^{\frac{3}{2}}}$. Then $\small{\frac{du}{dx}~=~(-1)\frac{3}{2} x^{1/2}}$
$\small{\Rightarrow du ~=~(-1)\frac{3}{2} x^{1/2}\,dx}$
$\small{F~=~\int{\left[\frac{(-1)(-1) (3/2)(2/3) x^{1/2}}{\left(30 - x^{\frac{3}{2}} \right)^2} \right]dx}~=~\int{\left[\frac{(-1)(2/3)du}{\left(u \right)^2} \right]}}$
$\small{~=~(-1)(2/3)\,\int{\left[\frac{du}{\left(u \right)^2} \right]}~=~(-1)(2/3){\left[\frac{u^{-1}}{\left(-1 \right)} \right]}}$
$\small{~=~\frac{2}{3u}~=~\frac{2}{3\left(30 - x^{\frac{3}{2}}\right)}}$
2. Therefore, by the second fundamental theorem of calculus, we get:
$\small{I~=~F(9)\,-\,F(4)~=~\left[\frac{2}{3\left(30 - x^{\frac{3}{2}}\right)} \right]_{4}^{9}}$
$\small{~=~\left[\frac{2}{3\left(30 - 9^{\frac{3}{2}}\right)}\right]~-~\left[\frac{2}{3\left(30 - 4^{\frac{3}{2}}\right)} \right]}$
$\small{~=~\left[\frac{2}{3\left(3\right)}\right]~-~\left[\frac{2}{3\left(22\right)} \right]~=~\frac{19}{99}}$
Part (iii): $\small{\int_{1}^{2}{\left[\frac{x}{(x+1)(x+2)} \right]dx}}$
1. Let $\small{I~=~\int_{1}^{2}{\left[\frac{x}{(x+1)(x+2)} \right]dx}}$
• First we find the indefinite integral F.
(a) The numerator is a polynomial of degree one. The denominator is a polynomial of degree 2.
(b) So it is a proper rational function. We can straight away start partial fraction decomposition
(c) The denominator is already in the factorized form:
(x+1)(x+2)
♦ All factors are linear
♦ And all factors are distinct from one another.
(d) So we are able to write:
$\small{\frac{x}{(x+1)(x+2)}\,=\,\frac{A_1}{x+1}~+~\frac{A_2}{x+2}}$
Where A1 and A2 are real numbers.
(e) To find A1 and A2, we make denominators same on both sides:
$\small{\frac{x}{(x+1)(x+2)}\,=\,\frac{A_1}{x+1}~+~\frac{A_2}{x+2}~=~\frac{A_1 (x+2)~+~A_2 (x+1)}{(x+1)(x+2)}}$
(f) Since denominators are same on both sides, we can equate the numerators. We get:
$\small{x~=~A_1 (x+2)~+~A_2 (x+1)}$
(g) After equating the numerators, we can use suitable substitution.
♦ Put x = −2. We get: −2 = A2(−1). So A2 = 2
♦ Put x = −1. We get: −1 = A1(1). So A1 = −1
(h) Now the result in (d) becomes:
$\small{\frac{x}{(x+1)(x+2)}\,=\,\frac{-1}{x+1}~+~\frac{2}{x+2}}$
(h) So the integration becomes easy. We get:
$\small{-\log \left|x+1 \right|~+~2\log \left|x+2 \right|}$
2. Therefore, by the second fundamental theorem of calculus, we get:
$\small{I~=~F(2)\,-\,F(1)~=~\left[-\log \left|x+1 \right|~+~2\log \left|x+2 \right| \right]_{1}^{2}}$
$\small{~=~\left[-\log \left|2+1 \right|~+~2\log \left|2+2 \right|\right]~-~\left[-\log \left|1+1 \right|~+~2\log \left|1+2 \right|\right]}$
$\small{~=~\left[-\log \left|3 \right|~+~2\log \left|4 \right|\right]~-~\left[-\log \left|2 \right|~+~2\log \left|3 \right|\right]}$
$\small{~=~-\log \left|3 \right|~+~2\log \left|4 \right|~+~\log \left|2 \right|~-~2\log \left|3 \right|}$
$\small{~=~-3\log \left|3 \right|~+~4\log \left|2 \right|~+~\log \left|2 \right|}$
$\small{~=~-3\log \left|3 \right|~+~5\log \left|2 \right|~=~\log\left(\frac{32}{27} \right)}$
Part (iv): $\small{\int_{0}^{\frac{\pi}{4}}{\left[\sin^3(2t) \cos(2t) \right]dt}}$
1. Let $\small{I~=~\int_{0}^{\frac{\pi}{4}}{\left[\sin^3(2t) \cos(2t) \right]dt}}$
• First we find the indefinite integral F.
Let $\small{u = \sin(2t)}$. Then $\small{\frac{du}{dx}~=~2 \cos (2t)}$
$\small{\Rightarrow du ~=~2 \cos (2t)\,dx}$
$\small{F~=~\int{\left[(2/2)\sin^3(2t) \cos(2t) \right]dx}~=~\int{\left[(1/2)u^3 \right]du}}$
$\small{~=~(1/2)\,\int{\left[u^3 \right]du}~=~(1/2){\left[\frac{u^{4}}{4} \right]}}$
$\small{~=~\frac{\sin^4(2t)}{8}}$
2. Therefore, by the second fundamental theorem of calculus, we get:
$\small{I~=~F(\frac{\pi}{4})\,-\,F(0)~=~\left[\frac{\sin^4(2t)}{8} \right]_{0}^{\frac{\pi}{4}}}$
$\small{~=~\left[\frac{\sin^4(\frac{\pi}{2})}{8}\right]~-~\left[\frac{\sin^4(0)}{8} \right]}$
$\small{~=~\left[\frac{1^4}{8}\right]~-~\left[\frac{0}{8} \right]~=~\frac{1}{8}}$
Solved Example 23.87
Evaluate the definite integral $\small{\int_{1}^{2}{\left[\frac{5x^2}{x^2 + 4x + 3} \right]dx}}$
Solution:
1. Let $\small{I~=~\int_{1}^{2}{\left[\frac{5x^2}{x^2 + 4x + 3} \right]dx}}$
• First we find the indefinite integral F.
We have:
$\small{F~=~\int{\left[\frac{5x^2}{x^2 + 4x + 3} \right]dx}}$
(a) The numerator is a polynomial of degree 2. The denominator is also a polynomial of degree 2.
(b) So it is not a proper rational function. We must do long division. We get:
$\small{\frac{5x^2}{x^2 + 4x + 3}\,=\,5~-~ \frac{20x + 15}{x^2 + 4x + 3}}$
• The reader may write all steps involved in the long division (or any other suitable method) process.
(c)
In the R.H.S, the first term can be easily integrated. But the second
term must be subjected to partial fraction decomposition.
• First we factorize the denominator. We get:
$\small{x^2 + 4x + 3~=~(x+1)(x+3)}$
• The reader may write all steps involved in the factorization process.
♦ All factors are linear
♦ And all factors are distinct from one another.
(d) So we are able to write:
$\small{\frac{20x + 15}{x^2 + 4x + 3}\,=\,\frac{20x + 15}{(x+1)(x+3)}\,=\,\frac{A_1}{x+1}~+~\frac{A_2}{x+3}}$
Where A1 and A2 are real numbers.
(e) To find A1 and A2, we make denominators same on both sides:
$\small{\frac{20x + 15}{(x+1)(x+3)}\,=\,\frac{A_1}{x+1}~+~\frac{A_2}{x+3}~=~\frac{A_1 (x+3)~+~A_2 (x+1)}{(x+1)(x+3)}}$
(f) Since denominators are same on both sides, we can equate the numerators. We get:
$\small{20x + 15~=~A_1 (x+3)~+~A_2 (x+1)}$
(g) After equating the numerators, we can use suitable substitution.
♦ Put x = -1. We get: -5 = A1(2). So A1 = −5/2
♦ Put x = -3. We get: -45 = A2(-2). So A2 = 45/2
(h) Now the result in (b) becomes:
$\small{\frac{5x^2}{x^2
+ 4x + 3}\,=\,5~-~ \frac{20x + 15}{x^2 + 4x +
3}~=~5~-~\left[\frac{(-5)}{2(x+1)}~+~\frac{45}{2(x+3)} \right]}$
$\small{~=~5~+~\frac{5}{2(x+1)}~-~\frac{45}{2(x+3)} }$
(i) So the integration becomes easy. We get:
$\small{5x + \frac{5}{2} \log \left|x+1 \right| -\frac{45}{2} \log \left|x+3 \right|}$
$\small{I~=~F(\frac{\pi}{6})\,-\,F(\frac{\pi}{4})~=~\left[5x + \frac{5}{2} \log \left|x+1 \right| -\frac{45}{2} \log \left|x+3 \right| \right]_{1}^{2}}$
$\small{~=~\left[10 + \frac{5}{2} \log \left|3 \right| -\frac{45}{2} \log \left|5 \right|\right]~-~\left[5 + \frac{5}{2} \log \left|2 \right| -\frac{45}{2} \log \left|4 \right| \right]}$
$\small{~=~10 + \frac{5}{2} \log \left|3 \right| -\frac{45}{2} \log \left|5 \right|~-~5 - \frac{5}{2} \log \left|2 \right| +\frac{45}{2} \log \left|4 \right| }$
$\small{~=~5 + \frac{5}{2} \log \left|\frac{3}{2} \right| +\frac{45}{2} \log \left|\frac{4}{5} \right| }$
The link below gives a few more solved examples:
Exercise 23.9
In the next section, we will see evaluation of definite integrals by substitution.
Previous
Contents
Copyright©2025 Higher secondary mathematics.blogspot.com